Skip to main content

Effects of Low Dose-Rate Radiation on Cellular Survival

  • Chapter
Targeted Radionuclide Tumor Therapy
  • 1100 Accesses

Summary

The experience of external radiotherapy can only to a limited extent be used to understand therapeutic effects of radionuclide therapy. A major difference is that the dose-rate at radionuclide therapy is at least two orders of magnitude lower. Part of this chapter deals with estimates of the necessary dose-rate and exposure time in combination in order to deliver therapeutic effects to tumour cells. It is proposed that combinations of about 0.1–0.2 Gy/h for several days or about 1 Gy/h for at least 1 day is necessary. Such dose-rates can be achieved with the help of cross fire radiation. Effects of radionuclide therapy in terms of apoptosis, cell-cycle blocks and hyperradiosensitivity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

LDR:

Low dose-rate

CAF:

Cross-fire amplifying factor

LET:

Linear energy transfer

HRS:

Hyperradiosensitivity

References

  1. S teel GG (2002) Basic clinical radiobiology. Hodder Education. London (ISBN 9780340807835).

    Google Scholar 

  2. H all EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Chapter 5. Lippincott, Williams & Wilkins. Philadelphia, PA (ISBN 0-7817-4151-3).

    Google Scholar 

  3. Dale R, Jones B (2007) Radiobiological modelling in radiation oncology. BIR, the British Institute of radiology, London (ISBN 13978-0-905749-60-0).

    Google Scholar 

  4. D illehay LE, Williams JR (1990) Radiobiology of dose-rate patterns achievable in radioimmuno globulin therapy. Front Radiat Ther Oncol 24:96-103.

    PubMed  Google Scholar 

  5. Dale RG (1996) Dose-rate effects in targeted radiotherapy. Phys Med Biol 41(10):1871-1884.

    Article  PubMed  Google Scholar 

  6. Murtha AD (2000) Radiobiology of low-dose-rate radiation relevant to radioimmunotherapy. Cancer Biother Radiopharm 15(1):7-14.

    Article  PubMed  Google Scholar 

  7. Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J (2003) Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol 66(2):107-117.

    Article  PubMed  Google Scholar 

  8. Hernandez MC, Knox SJ (2004) Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 59(5):1274-1287.

    PubMed  Google Scholar 

  9. M urray D, McEwan AJ (2007) Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm 22(1):1-23.

    Article  PubMed  Google Scholar 

  10. Bedford JS, Mitchell JB (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54(2):316-327.

    Article  PubMed  Google Scholar 

  11. Mitchell JB, Bedford JS, Bailey S (1979) Dose-rate effects in mammalian cells in culture III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines. Radiat Res 79(3):537-551.

    Article  PubMed  Google Scholar 

  12. Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 34(1):251-266.

    PubMed  Google Scholar 

  13. Carlsson J, Eriksson V, Stenerlow B, Lundqvist H (2006) Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy. Eur J Nucl Med Mol Imaging 33(10):1185-1195.

    Article  PubMed  Google Scholar 

  14. Carlsson J, Hakansson E, Eriksson V, Grawe J, Wester K, Grusell E, Montelius A, Lundqvist H (2003) Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biother Radiopharm 18(4):663-670.

    Article  PubMed  Google Scholar 

  15. Joiner MC, Marples B, Lambin P, Short SC, Turesson I (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 49(2):379-389.

    Article  PubMed  Google Scholar 

  16. Mitchell CR, Folkard M, Joiner MC (2002) Effects of exposure to low-dose-rate 60Co gamma rays on human tumor cells in vitro. Radiat Res 158(3):311-318.

    Article  PubMed  Google Scholar 

  17. Dillehay LE (1990) A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division. Radiat Res 124(2):201-207.

    Article  PubMed  Google Scholar 

  18. Wong JY, Williams LE, Demidecki AJ, Wessels BW, Yan XW (1991) Radiobiologic studies comparing Yttrium-90 irradiation and external beam irradiation in vitro. Int J Radiat Oncol Biol Phys 20(4):715-722.

    PubMed  Google Scholar 

  19. Hartman T, Lundqvist H, Westlin JE, Carlsson J (2000) Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with 131I labelled ligands or antibodies. Int J Radiat Oncol Biol Phys 46(4):1025-1036.

    PubMed  Google Scholar 

  20. Howell RW, Neti PV (2005) Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose. Radiat Res 163 (2):216-221.

    Article  PubMed  Google Scholar 

  21. Saha GB (2006) Physics and radiobiology of nuclear medicine. Springer. New York (ISBN 9780387307541).

    Google Scholar 

  22. Prise KM, Folkard M, Michael BD (2003) A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 104(4):347-355.

    PubMed  Google Scholar 

  23. Hall EJ (2003) The bystander effect. Health Phys 85(1): 31-35.

    Article  PubMed  Google Scholar 

  24. Mothersill C, Seymour CB (2004) Radiation-induced bystander effects-implications for cancer. Nat Rev Cancer 4(2):158-164.

    PubMed  Google Scholar 

  25. Mirzaie-Joniani H, Eriksson D, Johansson A, Lofroth PO, Johansson L, Ahlstrom KR, Stigbrand T (2002) Apoptosis in HeLa Hep2 cells is induced by low-dose, low-dose-rate radiation. Radiat Res 158(5):634-640.

    Article  PubMed  Google Scholar 

  26. Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T (2002) Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 94 (4 Suppl):1210-1214.

    Article  PubMed  Google Scholar 

  27. Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L (2003) Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 30(3):303-315.

    Article  PubMed  Google Scholar 

  28. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36 (10):1902-1909.

    PubMed  Google Scholar 

  29. Essand M, Gronvik C, Hartman T, Carlsson J (1995) Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer 63(3):387-394.

    Article  PubMed  Google Scholar 

  30. Steffen AC, Orlova A, Wikman M, Nilsson FY, Stahl S, Adams GP, Tolmachev V, Carlsson J (2006) Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33(6):631-638.

    Article  PubMed  Google Scholar 

  31. Weinstein JN, Eger RR, Covell DG, Black CD, Mulshine J, Carrasquillo JA (1987) The pharmacology of monoclonal antibodies. Ann N Y Acad Sci 507:199-210.

    Article  PubMed  Google Scholar 

  32. Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1989) Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res 49:5656-5663.

    PubMed  Google Scholar 

  33. Lindstrom A, Carlsson J (1993) Penetration and binding of epidermal growth factor-dextran conjugates in spheroids of human glioma origin. Cancer Biother 8:145-158.

    PubMed  Google Scholar 

  34. Carlsson J, Gedda L (2006) Penetration of tumor therapy interesting substances in non-vasularized metastases: review of studies in multicellular spheroids. Curr Cancer Ther Rev 2:293-304.

    Article  Google Scholar 

  35. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res June 15; 61(12):4750-4755.

    Google Scholar 

  36. DeNardo SJ, Williams LE, Leigh BR, Wahl RL (2002) Choosing an optimal radioimmunotherapy dose for clinical response. Cancer 94(4 Suppl):1275-1286.

    Article  PubMed  Google Scholar 

  37. Witzig TE (2006) Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 19(4):655-668.

    Article  PubMed  Google Scholar 

  38. Larson SM, Krenning EP (2005) A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med 46(Suppl 1):1S-3S.

    PubMed  Google Scholar 

  39. Dikomey E, Brammer I (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose-rates and plating conditions in a normal human fibroblast line. Int J Radiat Biol 76(6):773-781

    Article  PubMed  Google Scholar 

  40. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, Deweese TL (2004) Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 279 (48):49624-49632.

    Article  PubMed  Google Scholar 

  41. Chapman JD (2003) Single-hit mechanism of tumour cell killing by radiation. Int J Radiat Biol 79(2):71-81.

    PubMed  Google Scholar 

  42. Verwijnen S, Capello A, Bernard B, van den Aardweg G, Konijnenberg M, Breeman W, Krenning E, de Jong M (2004) Low-dose-rate irradiation by 131I versus high-dose-rate external beam irradiation in the rat pancreatic tumor cell line CA20948. Cancer Biother Radiopharm 19 (3):285-292.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Carlsson, J. (2008). Effects of Low Dose-Rate Radiation on Cellular Survival. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_16

Download citation

Publish with us

Policies and ethics