Skip to main content

Radiation Induced DNA Damage Checkpoints

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

Radiation induced damage to DNA can be limited to exchanges of single DNA bases or extensive double-strand breaks. Nuclear proteins can sense these alterations and are able to cause cell cycle arrests at the G1/S, intra-S or G2/M checkpoints in the cell cycle, until the lesions undergo repair. If the induction of these cell cycle arrests is defective, genomic instability and aberrations in the cell cycle kinetics appear, which may cause cell death. In this chapter radiation induced effects on the cell cycle will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411(6835):366-74.

    PubMed  CAS  Google Scholar 

  2. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics 2001; 27(3):247-54.

    PubMed  CAS  Google Scholar 

  3. Nias AHW. Radiobiology. New York: Wiley, 1998.

    Google Scholar 

  4. Ward JF. Biochemistry of DNA lesions. Radiation Research 1985; 8(Suppl):S103-11.

    CAS  Google Scholar 

  5. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 2003; 22(37):5834-47.

    PubMed  CAS  Google Scholar 

  6. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annual Review of Genetics 2002; 36:617-56.

    PubMed  CAS  Google Scholar 

  7. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408(6811):433-9.

    PubMed  CAS  Google Scholar 

  8. Tsukamoto Y, Ikeda H. Double-strand break repair mediated by DNA end-joining. Genes Cells 1998; 3(3):135-44.

    PubMed  CAS  Google Scholar 

  9. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. The Lancet Oncology 2005; 6(7):520-8.

    PubMed  CAS  Google Scholar 

  10. Huang LC, Clarkin KC, Wahl GM. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proceedings of the National Academy of Sciences of the United States of America 1996; 93(10):4827-32.

    PubMed  CAS  Google Scholar 

  11. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000; 407(6805):777-83.

    PubMed  CAS  Google Scholar 

  12. Erenpreisa J, Cragg MS. Cancer: a matter of life cycle? Cell Biology International 2007; 31(12):1507-10.

    PubMed  CAS  Google Scholar 

  13. Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics & Development 2007; 17(2):157-62.

    CAS  Google Scholar 

  14. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews. Molecular Cell Biology 2004; 5(1):45-54.

    PubMed  CAS  Google Scholar 

  15. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nature Reviews 2003; 3(3):155-68.

    PubMed  CAS  Google Scholar 

  16. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421(6922):499-506.

    PubMed  CAS  Google Scholar 

  17. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 2004; 3(8-9):997-1007.

    PubMed  CAS  Google Scholar 

  18. Su TT. Cellular responses to DNA damage: one signal, multiple choices. Annual Review of Genetics 2006; 40:187-208.

    PubMed  CAS  Google Scholar 

  19. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annual Review of Immunology 1997; 15:177-202.

    PubMed  CAS  Google Scholar 

  20. Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes & Development 2000; 14(4):397-402.

    CAS  Google Scholar 

  21. Brown EJ, Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes & Development 2003; 17(5):615-28.

    CAS  Google Scholar 

  22. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science (New York) 2001; 294(5547):1713-6.

    CAS  Google Scholar 

  23. Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovascular Revascularization Medicine 2006; 7 (3):165-72.

    PubMed  Google Scholar 

  24. Collis SJ, DeWeese TL, Jeggo PA, Parker AR. The life and death of DNA-PK. Oncogene 2005; 24(6):949-61.

    PubMed  CAS  Google Scholar 

  25. Sakata K, Someya M, Matsumoto Y, Hareyama M. Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. Radiation Medicine 2007; 25(9):433-8.

    PubMed  CAS  Google Scholar 

  26. Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell 2004; 118(1):9-17.

    PubMed  CAS  Google Scholar 

  27. Kastan MB, Lim DS, Kim ST, Yang D. ATM-a key determinant of multiple cellular responses to irradiation. Acta Oncologica (Stockholm, Sweden) 2001; 40(6):686-8.

    CAS  Google Scholar 

  28. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science (New York) 1998; 281(5383):1674-7.

    CAS  Google Scholar 

  29. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science (New York) 1998; 281(5383):1677-9.

    CAS  Google Scholar 

  30. Chan DW, Gately DP, Urban S, Galloway AM, Lees-Miller SP, Yen T, Allalunis-Turner J. Lack of correlation between ATM protein expression and tumour cell radiosensitivity. International Journal of Radiation Biology 1998; 74(2):217-24.

    PubMed  CAS  Google Scholar 

  31. Lakin ND, Weber P, Stankovic T, Rottinghaus ST, Taylor AM, Jackson SP. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 1996; 13(12):2707-16.

    PubMed  CAS  Google Scholar 

  32. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & Development 2001; 15(17):2177-96.

    CAS  Google Scholar 

  33. Paulsen RD, Cimprich KA. The ATR pathway: fine-tuning the fork. DNA Repair 2007; 6(7):953-66.

    PubMed  CAS  Google Scholar 

  34. Zou L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes & Development 2007; 21(8):879-85.

    CAS  Google Scholar 

  35. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. Involvement of novel autophosphorylation sites in ATM activation. The EMBO Journal 2006; 25(15):3504-14.

    PubMed  CAS  Google Scholar 

  36. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005; 434(7033):605-11.

    PubMed  CAS  Google Scholar 

  37. You Z, Chahwan C, Bailis J, Hunter T, Russell P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Molecular and Cellular Biology 2005; 25 (13):5363-79.

    PubMed  CAS  Google Scholar 

  38. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology 2007; 19(2):238-45.

    PubMed  CAS  Google Scholar 

  39. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochemistry and Cell Biology = Biochimie et biologie cellulaire 2003; 81(3):123-9.

    PubMed  CAS  Google Scholar 

  40. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. The Journal of Cell Biology 1999; 146(5):905-16.

    PubMed  CAS  Google Scholar 

  41. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of Biological Chemistry 1998; 273(10):5858-68.

    PubMed  CAS  Google Scholar 

  42. Fernandez-Capetillo O, Celeste A, Nussenzweig A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle (Georgetown, TX) 2003; 2(5):426-7.

    CAS  Google Scholar 

  43. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2005; 123(7):1213-26.

    PubMed  CAS  Google Scholar 

  44. Stucki M, Jackson SP. GammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 2006; 5(5):534-43.

    PubMed  CAS  Google Scholar 

  45. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. The Journal of Cell Biology 2006; 173(2):195-206.

    PubMed  CAS  Google Scholar 

  46. Lukas C, Melander F, Stucki M, et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. The EMBO Journal 2004; 23(13):2674-83.

    PubMed  CAS  Google Scholar 

  47. Carney JP, Maser RS, Olivares H, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93(3):477-86.

    PubMed  CAS  Google Scholar 

  48. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. The Journal of Cell Biology 2000; 151(7):1381-90.

    PubMed  CAS  Google Scholar 

  49. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90(3):425-35.

    PubMed  CAS  Google Scholar 

  50. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421(6926):961-6.

    PubMed  CAS  Google Scholar 

  51. Yamane K, Wu X, Chen J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Molecular and Cellular Biology 2002; 22(2):555-66.

    PubMed  CAS  Google Scholar 

  52. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology 2003; 5 (7):675-9.

    PubMed  CAS  Google Scholar 

  53. Fernandez-Capetillo O, Chen HT, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biology 2002; 4(12):993-7.

    PubMed  CAS  Google Scholar 

  54. Kruhlak MJ, Celeste A, Nussenzweig A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle (Georgetown, TX) 2006; 5(17):1910-2.

    CAS  Google Scholar 

  55. Adams KE, Medhurst AL, Dart DA, Lakin ND. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006; 25(28):3894-904.

    PubMed  CAS  Google Scholar 

  56. Chen L, Nievera C, Lee AY, Wu X. Cell cycle-dependent complex formation of BRCA1/CtIP/ MRN is important for DNA double-strand break repair. The Journal of Biological Chemistry 2008; 283(12):7713-20.

    PubMed  CAS  Google Scholar 

  57. Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. The Journal of Biological Chemistry 2006; 281(14):9346-50.

    PubMed  CAS  Google Scholar 

  58. Venclovas C, Thelen MP. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 partici- pation in sliding clamp and clamp-loading complexes. Nucleic Acids Research 2000; 28(13):2481-93.

    PubMed  CAS  Google Scholar 

  59. Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proceedings of the National Academy of Sciences of the United States of America 2003; 100(4):1633-8.

    PubMed  CAS  Google Scholar 

  60. Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5 recessed DNA. PLoS Biology 2003; 1 (2):E33.

    PubMed  Google Scholar 

  61. Majka J, Chung BY, Burgers PM. Requirement for ATP by the DNA damage checkpoint clamp loader. The Journal of Biological Chemistry 2004; 279(20):20921-6.

    PubMed  CAS  Google Scholar 

  62. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science (New York) 1999; 286 (5442):1162-6.

    CAS  Google Scholar 

  63. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB. ATM phosphorylates p95/ nbs1 in an S-phase checkpoint pathway. Nature 2000; 404(6778):613-7.

    PubMed  CAS  Google Scholar 

  64. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry 2004; 73:39-85.

    PubMed  CAS  Google Scholar 

  65. McGowan CH. Checking in on Cds1 (Chk2): a checkpoint kinase and tumor suppressor. Bioessays 2002; 24(6):502-11.

    PubMed  CAS  Google Scholar 

  66. Melo J, Toczyski D. A unified view of the DNA-damage checkpoint. Current Opinion in Cell Biology 2002; 14(2):237-45.

    PubMed  CAS  Google Scholar 

  67. Rhind N, Russell P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. Journal of Cell Science 2000; 113(Pt 22):3889-96.

    PubMed  CAS  Google Scholar 

  68. Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science (New York) 2000; 287(5459):1824-7.

    CAS  Google Scholar 

  69. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasiamutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America 2000; 97(19):10389-94.

    PubMed  CAS  Google Scholar 

  70. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Molecular and Cellular Biology 2001; 21(13):4129-39.

    PubMed  CAS  Google Scholar 

  71. Cann KL, Hicks GG. Regulation of the cellular DNA double-strand break response. Biochemistry and Cell Biology = Biochimie et biologie cellulaire 2007; 85(6):663-74.

    PubMed  CAS  Google Scholar 

  72. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410(6830):842-7.

    PubMed  CAS  Google Scholar 

  73. Molinari M, Mercurio C, Dominguez J, Goubin F, Draetta GF. Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Reports 2000; 1(1):71-9.

    PubMed  CAS  Google Scholar 

  74. Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proceedings of the National Academy of Sciences of the United States of America 2002; 99 (23):14795-800.

    PubMed  CAS  Google Scholar 

  75. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Current Opinion in Cell Biology 2001; 13(6):738-47.

    PubMed  CAS  Google Scholar 

  76. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Letters 2001; 490(3):117-22.

    PubMed  CAS  Google Scholar 

  77. Chen Y, Sanchez Y. Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair 2004; 3(8-9):1025-32.

    PubMed  CAS  Google Scholar 

  78. Cuadrado M, Martinez-Pastor B, Murga M, Toledo LI, Gutierrez-Martinez P, Lopez E, Fernandez-Capetillo O. ATM regulates ATR chromatin loading in response to DNA doublestrand breaks. The Journal of Experimental Medicine 2006; 203(2):297-303.

    PubMed  CAS  Google Scholar 

  79. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP. ATM- and cell cycledependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology 2006; 8(1):37-45.

    PubMed  CAS  Google Scholar 

  80. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432(7015):316-23.

    PubMed  CAS  Google Scholar 

  81. Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. Journal of Cellular Physiology 2006; 209(1):13-20.

    PubMed  CAS  Google Scholar 

  82. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 1991; 51(23 Pt 1):6304-11.

    PubMed  CAS  Google Scholar 

  83. Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proceedings of the National Academy of Sciences of the United States of America 1992; 89 (19):9210-4.

    PubMed  CAS  Google Scholar 

  84. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(24):13777-82.

    PubMed  CAS  Google Scholar 

  85. Kastan MB, Lim DS. The many substrates and functions of ATM. Nature Reviews. Molecular Cell Biology 2000; 1(3):179-86.

    PubMed  CAS  Google Scholar 

  86. Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biology 2001; 3(12):E277-86.

    PubMed  CAS  Google Scholar 

  87. Sun A, Bagella L, Tutton S, Romano G, Giordano A. From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. Journal of Cellular Biochemistry 2007; 102(6):1400-4.

    PubMed  CAS  Google Scholar 

  88. Cazzalini O, Perucca P, Riva F, Stivala LA, Bianchi L, Vannini V, Ducommun B, Prosperi E. p21CDKN1A does not interfere with loading of PCNA at DNA replication sites, but inhibits subsequent binding of DNA polymerase delta at the G1/S phase transition. Cell Cycle (Georgetown, TX) 2003; 2(6):596-603.

    CAS  Google Scholar 

  89. Agami R, Bernards R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 2000; 102(1):55-66.

    PubMed  CAS  Google Scholar 

  90. Boddy MN, Russell P. DNA replication checkpoint. Current Biology 2001; 11(23):R953-6.

    PubMed  CAS  Google Scholar 

  91. Osborn AJ, Elledge SJ, Zou L. Checking on the fork: the DNA-replication stress-response pathway. Trends in Cell Biology 2002; 12(11):509-16.

    PubMed  CAS  Google Scholar 

  92. Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nature Reviews. Molecular Cell Biology 2004; 5(10):792-804.

    PubMed  CAS  Google Scholar 

  93. Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M, Grieco D, Gautier J. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Molecular Cell 2000; 6(3):649-59.

    PubMed  CAS  Google Scholar 

  94. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genetics 2002; 30(3):290-4.

    PubMed  Google Scholar 

  95. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. Science (New York) 2000; 288(5470):1425-9.

    CAS  Google Scholar 

  96. Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proceedings of the National Academy of Sciences of the United States of America 1980; 77 (12):7315-7.

    PubMed  CAS  Google Scholar 

  97. Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annual Review of Genetics 1997; 31:635-62.

    PubMed  CAS  Google Scholar 

  98. Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999; 99(6):577-87.

    PubMed  CAS  Google Scholar 

  99. Taalman RD, Jaspers NG, Scheres JM, de Wit J, Hustinx TW. Hypersensitivity to ionizing radiation, in vitro, in a new chromosomal breakage disorder, the Nijmegen Breakage Syndrome. Mutation Research 1983; 112(1):23-32.

    PubMed  CAS  Google Scholar 

  100. Hirano T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes & Development 2002; 16(4):399-414.

    CAS  Google Scholar 

  101. Kim ST, Xu B, Kastan MB. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes & Development 2002; 16(5):560-70.

    CAS  Google Scholar 

  102. Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes & Development 2002; 16 (5):571-82.

    CAS  Google Scholar 

  103. Olson E, Nievera CJ, Liu E, Lee AY, Chen L, Wu X. The Mre11 complex mediates the S-phase checkpoint through an interaction with replication protein A. Molecular and Cellular Biology 2007; 27(17):6053-67.

    PubMed  CAS  Google Scholar 

  104. Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biology 2002; 4(12):913-20.

    PubMed  CAS  Google Scholar 

  105. Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science (New York) 2002; 298(5597):1435-8.

    CAS  Google Scholar 

  106. Merrick CJ, Jackson D, Diffley JF. Visualization of altered replication dynamics after DNA damage in human cells. Journal of Biological Chemistry 2004; 279(19):20067-75.

    PubMed  CAS  Google Scholar 

  107. Shimura T, Toyoshima M, Adiga SK, Kunoh T, Nagai H, Shimizu N, Inoue M, Niwa O. Suppression of replication fork progression in low-dose-specific p53-dependent S-phase DNA damage checkpoint. Oncogene 2006; 25(44):5921-32.

    PubMed  CAS  Google Scholar 

  108. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nature Reviews 2007; 7(7):495-507.

    PubMed  CAS  Google Scholar 

  109. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Reports 2003; 4(7):671-7.

    PubMed  CAS  Google Scholar 

  110. Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006; 21(1):3-9.

    PubMed  CAS  Google Scholar 

  111. Chen MS, Hurov J, White LS, Woodford-Thomas T, Piwnica-Worms H. Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Molecular and Cellular Biology 2001; 21(12):3853-61.

    PubMed  CAS  Google Scholar 

  112. Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nature Genetics 2002; 30(4):446-9.

    PubMed  CAS  Google Scholar 

  113. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. The EMBO Journal 2002; 21(21):5911-20.

    PubMed  CAS  Google Scholar 

  114. Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. Journal of Biological Chemistry 2003; 278(24):21767-73.

    PubMed  CAS  Google Scholar 

  115. Sorensen CS, Syljuasen RG, Falck J, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3(3):247-58.

    PubMed  CAS  Google Scholar 

  116. Busino L, Donzelli M, Chiesa M, et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 2003; 426(6962):87-91.

    PubMed  CAS  Google Scholar 

  117. Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. The EMBO Journal 2004; 23(16):3386-96.

    PubMed  CAS  Google Scholar 

  118. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science (New York) 1998; 282(5395):1893-7.

    CAS  Google Scholar 

  119. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science (New York) 1997; 277(5331):1501-5.

    CAS  Google Scholar 

  120. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science (New York) 1997; 277(5331):1497-501.

    CAS  Google Scholar 

  121. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20 (15):1803-15.

    PubMed  CAS  Google Scholar 

  122. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999; 401(6753):616-20.

    PubMed  CAS  Google Scholar 

  123. Baus F, Gire V, Fisher D, Piette J, Dulic V. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. The EMBO Journal 2003; 22(15):3992-4002.

    PubMed  CAS  Google Scholar 

  124. Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cellular and Molecular Life Sciences 2002; 59(1):126-42.

    PubMed  CAS  Google Scholar 

  125. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366(6456):701-4.

    PubMed  CAS  Google Scholar 

  126. Stark GR, Taylor WR. Analyzing the G2/M checkpoint. Methods in Molecular Biology (Clifton, NJ) 2004; 280:51-82.

    CAS  Google Scholar 

  127. Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins JR. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Molecular and Cellular Biology 2001; 21(14):4684-99.

    PubMed  CAS  Google Scholar 

  128. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes & Development 2002; 16(2):245-56.

    CAS  Google Scholar 

  129. DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochimica et biophysica acta 2002; 1602(2):131-50.

    PubMed  CAS  Google Scholar 

  130. Wang XW, Zhan Q, Coursen JD, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proceedings of the National Academy of Sciences of the United States of America 1999; 96 (7):3706-11.

    PubMed  CAS  Google Scholar 

  131. DiTullio RA, Jr., Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis TD. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biology 2002; 4(12):998-1002.

    PubMed  CAS  Google Scholar 

  132. Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Molecular and Cellular Biology 2001; 21(10):3445-50.

    PubMed  CAS  Google Scholar 

  133. Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Proliferation 2000; 33(5):261-74.

    PubMed  CAS  Google Scholar 

  134. Shimada M, Nakanishi M. DNA damage checkpoints and cancer. Journal of Molecular Histology 2006; 37(5-7):253-60.

    PubMed  CAS  Google Scholar 

  135. Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway in cell cycle control and cancer. Experimental Cell Research 1997; 237(1):1-6.

    PubMed  CAS  Google Scholar 

  136. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2(2):103-12.

    PubMed  CAS  Google Scholar 

  137. Deckbar D, Birraux J, Krempler A, et al. Chromosome breakage after G2 checkpoint release. The Journal of Cell Biology 2007; 176(6):749-55.

    PubMed  CAS  Google Scholar 

  138. Lobrich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature Reviews 2007; 7(11):861-9.

    PubMed  Google Scholar 

  139. Marples B, Wouters BG, Collis SJ, Chalmers AJ, Joiner MC. Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiation Research 2004; 161(3):247-55.

    PubMed  CAS  Google Scholar 

  140. Short SC, Woodcock M, Marples B, Joiner MC. Effects of cell cycle phase on low-dose hyper-radiosensitivity. International Journal of Radiation Biology 2003; 79(2):99-105.

    PubMed  CAS  Google Scholar 

  141. Choudhury A, Cuddihy A, Bristow RG. Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Seminars in Radiation Oncology 2006; 16(1):51-8.

    PubMed  Google Scholar 

  142. Gasser S. DNA damage response and development of targeted cancer treatments. Annals of Medicine 2007; 39(6):457-64.

    PubMed  CAS  Google Scholar 

  143. Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. British Journal of Cancer 2008; 98(3):523-8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Eriksson, D., Riklund, K., Johansson, L., Stigbrand, T. (2008). Radiation Induced DNA Damage Checkpoints. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_14

Download citation

Publish with us

Policies and ethics