Skip to main content

Developing Energy Crops for Thermal Applications: Optimizing Fuel Quality, Energy Security and GHG Mitigation

  • Chapter
Biofuels, Solar and Wind as Renewable Energy Systems

Abstract

Unprecedented opportunities for biofuel development are occurring as a result of increasing energy security concerns and the need to reduce greenhouse gas (GHG) emissions. This chapter analyzes the potential of growing energy crops for thermal energy applications, making a case-study comparison of bioheat, biogas and liquid biofuel production from energy crops in Ontario. Switchgrass pellets for bioheat and corn silage biogas were the most efficient strategies found for displacing imported fossil fuels, producing 142 and 123 GJ/ha respectively of net energy gain. Corn ethanol, soybean biodiesel and switchgrass cellulosic ethanol produced net energy gains of 16, 11 and 53 GJ/ha, respectively. Bioheat also proved the most efficient means to reduce GHG emissions. Switchgrass pellets were found to offset 86–91% of emissions compared with using coal, heating oil, natural gas or liquid natural gas (LNG). Each hectare of land used for production of switchgrass pellets could offset 7.6–13.1 tonnes of CO2 annually. In contrast, soybean biodiesel, corn ethanol and switchgrass cellulosic ethanol could offset 0.9, 1.5 and 5.2 tonnes of CO2/ha, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Adler, P. A., Sanderson, M. A., Boateng, A. A., Weimer, P. J., & Jung, H. G. (2006). Biomass yield and biofuel quality of switchgrass harvested in fall and spring. Agron. J., 98, 1518–1525

    Article  CAS  Google Scholar 

  • De Baere, L. (2007). Dry Continuous Anaerobic Digestion of Energy Crops. (Paper presented at the 2nd International Energy Farming Congress, Papenberg, Germany)

    Google Scholar 

  • Bakker, R. R., & Elbersen, H. W. (2005). Managing ash content and quality in herbaceous biomass: An analysis from plant to product. (Paper presented at the 14th European Biomass Conference & Exhibition, Paris, France)

    Google Scholar 

  • Beadle, C. L., & Long, S. P. (1985). Photosynthesis-Is it limiting to biomass production? Biomass, 8, 119–168

    Article  CAS  Google Scholar 

  • Berglund, M., & Börjesson, P. (2006). Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy, 30, 254–266

    Article  Google Scholar 

  • Black, C. C. (1971). Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Advanced Ecological Resources, 7, 87–114

    Article  Google Scholar 

  • Bradley, D. (2006, May). GHG impacts of pellet production from woody biomass sources in BC, Canada. Retrieved July, 2007, fromwww.joanneum.at/iea-bioenergy-task38/projects/task38casestudies/can2-fullreport.pdf

    Google Scholar 

  • Braun, R., & Wellinger, A. (2005). Potential of Co-digestion. (Prepared under IEA Bioenergy, Task 37, Energy from Biogas and Landfill Gas)

    Google Scholar 

  • Boe A., Bortnem R., & Kephart, K. D. 2000. Quantitative description of the phytomers of big bluestem. Crop Science, 40, 737–741

    Google Scholar 

  • Burvall, J. (1997). Influence of harvest time and soil type on fuel quality in reed canary grass (Phalaris Arundinacea L.). Biomass and Bioenergy, 12(3), 149–154

    Article  CAS  Google Scholar 

  • Cassida, K. A., Muir, J. P., Hussey, M. A., Read, J. C., Venuto, B. C., & Ocumpaugh, W. R. (2005). Biofuel component concentrations and yields of Switchgrass in South Central U.S. environments. Crop Science, 45, 682–692

    CAS  Google Scholar 

  • Clark, F. E. (1977). Internal cycling of nitrogen in shortgrass prairie. Ecology, 58, 1322–1333

    Article  CAS  Google Scholar 

  • Crutzen, P., Mosier, A., Smith, K., and Winiwarter, W. 2007. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys., (7), 11191–11205.

    Google Scholar 

  • Darley, J., (2004, August). High Noon for Natural Gas: The New Energy Crisis. (Chelsea Green Publishing, ISBN 1-931498-53-9)

    Google Scholar 

  • Das, M. K., Fuentes, R. G., & Taliaferro, C. M. (2004). Genetic variability and trait relationships in switchgrass. Crop Science, 44, 443–448

    Google Scholar 

  • Elbersen, H. W., Christian, D. G., Bacher, W., Alexopoulou, E., Pignatelli, V., & van den Berg, D. (2002). Switchgrass Variety Choice in Europe. (Final Report FAIR 5-CT97-3701 “Switchgrass”)

    Google Scholar 

  • EIA. (2006). Emissions of Greenhouse Gasses in the United States 2005. Energy Information Administration, official energy statistics from the U.S. Government. Retrieved July, 2007, fromhttp://www.eia.doe.gov/oiaf/1605/ ggrpt/index.html

    Google Scholar 

  • Farrell, A. E., Plevin, R. J., Turner, B., Jones, A. D., O’Hare, M., & Kammen, D. M. 2006. Ethanol can contribute to energy and environmental goals. Science, 331, 506–508

    Article  Google Scholar 

  • Fiedler, F. (2004). The state of the art of small-scale pellet based heating systems and relevant regulations in Sweden, Austria and Germany. Renewable and Sustainable Energy Reviews, 8, 201–221

    Article  Google Scholar 

  • Finell, M. (2003). The use of reed canary-grass (Phalaris arundinacea) as a short fibre raw material for the pulp and paper industry. (Doctoral thesis prepared for the Swedish University of Agricultural Sciences, Grafiska Enheten, SLU, Umea, Sweden)

    Google Scholar 

  • Finell, M., Nilsson, C., Olsson, R., Agnemo, R., & Svensson, S. (2002). Briquetting of fractionated reed canary-grass for pulp production. Industrial Crops and Products, 16(3), 185–192

    Article  CAS  Google Scholar 

  • Gerin, P. A., Vliegen, F., & Jossart, J. M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99(7), 2620–2627

    Article  CAS  Google Scholar 

  • Girouard, P., Samson, R., & Mehdi, B. (1998). Harvest and Delivered Costs of Spring Harvested Switchgrass. (Final report prepared by REAP-Canada final for Natural Resources Canada, Ottawa Ontario)

    Google Scholar 

  • Godoy, S., & Chen, H. G. (2004). Potassium release during straw devolatilization. (Paper presented at the 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Florence, Florence, Italy, and WIP-Munich, Munich, Germany)

    Google Scholar 

  • Goel, K., Eisner, R., Sherson, G., Radiotis, T., & Li., J. (2000). Switchgrass: A potential pulp fibre source. Pulp & Paper-Canada, 101(6), 51–45

    Google Scholar 

  • Grahn, M., Azar, C., Lindgren, K., Berndes, G., & Gielen, D. (2007). Biomass for heat or as transportation fuel? A comparison between two model-base studies. Biomass & Bioenergy 31, 747–758

    Article  CAS  Google Scholar 

  • Hartmann, H., Turowski, P., Robmann, P., Ellner-Schuberth, F., & Hopf, N. (2007). Grain and straw combustion in domestic furnaces – influences of fuel types and fuel pretreatments. (Paper presented at the 15th European Biomass Conference and Exhibition, Berlin, Germany)

    Google Scholar 

  • Heede, R. (2006, May). “LNG Supply Chain Greenhouse Gas Emissions for the Cabrillo Deepwater Port: Natural Gas from Australia to California.” (Prepared by Climate Mitigation Services). Retrieved July, 2007, from http://edcnet.org/ProgramsPages/ LNGrptplusMay06.pdf

    Google Scholar 

  • Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 30(3), 11206–11210

    Article  Google Scholar 

  • House, H. K., DeBruyn, J., & Rodenburg, J. (2007) A Survey of Biogas Production Systems in Europe, and Their Application to North American Dairies. (Paper presented at the Sixth International Dairy Housing Conference, Minneapolis, Minnesota)

    Google Scholar 

  • Hughes, J. D. (2006). Natural gas at the cross roads. Canadian Embassy report. Retrieved Aug, 2007, from http://aspocanada.ca/images/stories/pdfs/hughes_ north_vancouver_nov%2026_ 2006.pdf

    Google Scholar 

  • Igathinathane, C., Womac, A. R., Sokhansanj, S., & Narayan, S. (2007). Size reduction of wet and dry biomass by linear knife grid device. (Paper number 076045 presented at the American Society of Agricultural and Biological Engineers (ASABE) Annual Meeting, San Antonio, Texas)

    Google Scholar 

  • Iogen Corporation. (2008). Cellulose ethanol. Retrieved Feb, 2008, from http://iogen.ca/ cellulose_ethanol/what_is_ethanol/process.html

    Google Scholar 

  • Jaramillo, P., Griffen, M. W., & Matthews, H. S. (2007). Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environmental Science and Technology, 41(17), 6290–6296

    Article  CAS  Google Scholar 

  • Jefferson, P. G., McCaughey, W. P., May, K., Woosaree, J., & McFarlane, L. (2004). Potential utilization of native prairie grasses from western Canada as ethanol feedstock. Canadian Journal of Plant Science, 84, 1067–1075

    Google Scholar 

  • Jones, L. H. P., & Handreck, K. A. (1967). Silica in soils, plants and animals. Advances in Agronomy, 19, 107–149

    Article  CAS  Google Scholar 

  • Jørgensen, U. (1997). Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass & Bioenergy, 12(3), 155–169

    Article  Google Scholar 

  • Jungmeier, G., Canella, L., Stiglbrunner, R., & Spitzer, J. (2000). LCA for comparison of GHG emissions of bio energy and fossil energy systems. (Prepared for Joanneum Research, Institut für Energieforschung, Graz. Report No.± IEF/B/06-99)

    Google Scholar 

  • Kaack, K., & Schwarz, K-U. (2001). Morphological and mechanical properties of Miscanthus in relation to harvesting, lodging, and growth conditions. Industrial Crops and Products, 14, 145–154

    Article  Google Scholar 

  • Koelling, M. R., & Kucera, C. L. (1965). Dry matter losses and mineral leaching in bluestem standing crop and litter. Ecology, 46, 529–532

    Article  Google Scholar 

  • Klass, D. L. (1998). Biomass for Renewable Energy, Fuels, and Chemicals. (London, U.K.: Academic Press)

    Google Scholar 

  • Kucera, C. L., & Ehrenreich, J. H. (1962). Some effects of annual burning on Central Missouri Prairie. Ecology, 43(2), 334–336

    Article  Google Scholar 

  • Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31, 575–584

    Article  CAS  Google Scholar 

  • Lanning, F. C., & Eleuterius, L. N. (1987). Silica and ash in native plants of the central and Southeastern regions of the United States. Annals of Botany, 60, 361–375

    Google Scholar 

  • Lanning, F. C., & Eleuterius, L. N. (1989). Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany, 64, 395–410

    CAS  Google Scholar 

  • López, C. P., Kirchmayr, R., Neureiter, M., Braun, R. (2005). Effect of physical and chemical pre-treatments on methane yield from maize silage and grains. (Poster presented at the 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen, Denmark)

    Google Scholar 

  • Lovins, A. (1977). Soft Energy Paths: Towards a Durable Peace. (San Francisco Friends of the Earth, and Cambridge Massachusetts Ballinger Publishing Co.)

    Google Scholar 

  • Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991). Fuel ethanol from cellulosic biomass. Science, 251(4999), 1318–1323

    Article  CAS  Google Scholar 

  • Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Ann. Rev. Energy Environ., 21, 403–465

    Article  Google Scholar 

  • Lynd, L. R., & Wang, M. Q. (2004). A product-nonspecific framework for evaluating the potential of biomass-based products to displace fossil fuels. J. Ind. Ecol., 7(3–4), 17–32

    Google Scholar 

  • Ma, J. F. (2003). Functions of silicon in higher plants. Prog Mol Subcell Biol., 33, 127–47

    Google Scholar 

  • Ma, J. F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., & Yano, M. (2004). Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology, 136, 3284–3289

    Article  CAS  Google Scholar 

  • Mähnert, P., Heiermann, M., & Linke, B. (2005). Batch- and Semi-continuous Biogas Production from Different Grass Species. (Produced by Leibniz-Institute of Agricultural Engineering Potsdam-Bornim, Potsdam, Germany)

    Google Scholar 

  • Mani, S., Sokhansanj, S., Bi, X., and Turhollow, A. (2006). Economics of producing fuel pellets from biomass. App Eng Agri. 22(3), 421–426.

    Google Scholar 

  • Manitoba Agriculture, Food and Rural Initiatives (MAFRI). (2006). Factsheet: Harvesting and Storage of Quality Hay and Silage, Retrieved Aug, 2007, from http://www.gov.mb.ca/ agriculture/ crops/forages/bjc01s02.html

    Google Scholar 

  • McLaughlin, S. B., Samson, R., Bransby, D., & Wiselogel, A. (1996). Evaluating physical, chemical and energetic properties of perennial grasses as biofuels. (Paper presented at Bioenergy 96: The 7th National Bioenergy Conference of the South Eastern Regional Biomass Energy Program, Nashville, TN)

    Google Scholar 

  • Natural Resources Canada, GHGenius version 3.9. (2007). Retrieved July, 2007, from http:// www.ghgenius.ca/

    Google Scholar 

  • Obernberger, I., & Thek, G. (2004). Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27, 653–669

    Article  CAS  Google Scholar 

  • Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA). (2007) Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metic units, annual. Retrieved Feb, 2008, from http://www.omafra.gov.on.ca/english/ stats/crops/estimate_metric.htm

    Google Scholar 

  • Pahkala, K., Mela, T., Hakkola, H., Jarvi, A., & Virkajari, P. (1996). Production and use of agrofibre in Finland. (Agricultural Research Centre of Finland. Part 1 of the Final report for study: Production of agrofibre crops - Agronomy and varieties)

    Google Scholar 

  • Pahkala, K., & Pihala, M. 2000. Different plant parts as raw material for fuel and pulp production. Industrial Crops and Products, 11, 119–128

    Article  CAS  Google Scholar 

  • Passalacqua, F., Zaetta, C., Janssone, R., Pigaht, M., Grassi, G., Pastre, O., Sandovar, A., Vegas, L., Tsoutsos, T., Karapanagiotis, N., Fjällström, T., Nilsson, S. & Bjerg, J. (2004). Pellets in southern Europe; The state of the art of pellets utilization in southern Europe: New perspectives of pellets from agri-residues. (Paper presented at the 2nd World Conference on Biomass for Energy, Industry and Climate Protection, ETA-Florence, Florence, Italy, and WIP-Munich, Munich, Germany.)

    Google Scholar 

  • Parrish, D. J., Wolf, D. D., Fike J. H., & Daniels, W. L. (2003). Switchgrass as a biofuel crop for the upper southeast: Variety trials and cultural improvements. (Oak ridge National Laboratory, Oak Ridge, TN. Final Report for 1997 to 2001, ORNL.SUB-03-19SY163C/01)

    Google Scholar 

  • Parrish, D. J., & Fike, J. H. (2005). The biology and agronomy of switchgrass for biofuels. Critical Reviews of Plant Sciences, 24, 423–459

    Article  Google Scholar 

  • Paulrud, S. 2004. Upgraded biofuels-effects of quality on processing, handling characteristics, combustion and ash melting. (Doctoral dissertation prepared for the Unit of Biomass Technology and Chemistry, SLU) Acta Universitatis agriculturae Suecia. Agraria, 449

    Google Scholar 

  • Paulrud, S., Nilsson, C., & Öhman, M. (2001). Reed canary-grass ash composition and its melting behaviour during combustion. Fuel, 80, 1391–1398

    Article  CAS  Google Scholar 

  • Roth, G., and Undersander, D. (1995). Corn silage production, management and feeding. North Central Regional Publication, 574

    Google Scholar 

  • Samson, R., Girouard, P., Omielan, J., & Henning, J. (1993). Integrated production of warm season grasses and agroforestry for biomass production. (Paper presented at Energy, Environment, Agriculture and Industry: The 1st Biomass Conference of the Americas, Golden, CO)

    Google Scholar 

  • Samson, R. A., & Omielan, J. (1994). Switchgrass: A potential biomass energy crop for ethanol production. (Paper presented at the 13th North American Prairie Conference, Windsor, Ontario, Canada)

    Google Scholar 

  • Samson, R., & Chen, Y. (1995). Short rotation forestry and the water problem. (Paper presented at the Natural Resources Canada Canadian Energy Plantation Workshop, Ottawa, Ontario)

    Google Scholar 

  • Samson, R. A., Blais, P-A., Mehdi, B., & Girouard, P. (1999a). Switchgrass Plant Improvement Program for Paper and Agri-Fibre Production in Eastern Canada. (Final report prepared by REAP-Canada for the Agricultural Adaptation Council of Ontario)

    Google Scholar 

  • Samson, R., Girouard, P., & Mehdi, B. (1999b). Establishment of Commercial Switchgrass Plantations. (Final report prepared by REAP-Canada for Natural Resources Canada)

    Google Scholar 

  • Samson, R., Drisdelle, M., Mulkins, L., Lapointe, C., & Duxbury, P. (2000). The use of switchgrass as a greenhouse gas offset strategy. (Paper presented at the Fourth Biomass Conference of the Americas, Buffalo, New York)

    Google Scholar 

  • Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., & Ho Lem, C. (2005). The potential of C4 perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Science, 24, 461–495

    Article  Google Scholar 

  • Samson, R. (2007). Switchgrass Production in Ontario: A Management Guide. Resource Efficient Agricultural Production (REAP) – Canada. Retrieved Aug, 2007, from http://www. reap-canada.com/library/Bioenergy/2007%20SG%20production%20guide-FINAL.pdf

    Google Scholar 

  • Samson, R., Bailey-Stamler, S., & Ho Lem, C. (2007). The Emerging Agro-Pellet Industry in Canada. (Paper presented at the 15th European Biomass Conference and Exhibition, Berlin, Germany)

    Google Scholar 

  • Samson, R., Bailey Stamler, S., Dooper, J., Mulder, S., Ingram, V., Clark, K. and Ho Lem, C. (2008a). Analysing Ontario Biofuel Options: Greenhouse Gas Mitigation Efficiency and Costs. (Final report prepared by REAP-Canada to the BIOCAP-Canada Foundation, Kingston, Ontario)

    Google Scholar 

  • Samson, R., Bailey-Stamler, S., & Ho Lem, C. (2008b). Optimization of Switchgrass Management for Commercial Fuel Pellet Production (Final report prepared by REAP-Canada for the Ontario Ministry of Food, Agriculture and Rural Affairs (OMAFRA) under the Alternative Renewable Fuels Fund)

    Google Scholar 

  • Sander, B. (1997). Properties of Danish biofuels and the requirements for power production. Biomass and Bioenergy, 12(3), 173–183

    Article  Google Scholar 

  • Sanderson, M. A., Egg, R. P., & Wiselogel, A. E. (1997). Biomass losses during harvest and storage of switchgrass. Biomass & Bioenergy, 12(2), 107–114

    Article  Google Scholar 

  • Schneider C., & Hartmann, H. (2005). Maize as energy crops for combustion-optimization of fuel supply. (Paper presented at the 14th European Biomass Conference & Exhibition, Paris, France)

    Google Scholar 

  • Sheenan, J., Camobreco, V., Duffield, J., Graboski, M., & Shapouri, H. (1998). Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. (Prepared for National Renewable Energy Laboratory (NREL) Project SK-580-24089UL).

    Google Scholar 

  • Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., & Nelson, R. (2004). Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol., 7(3–4), 117–146

    Google Scholar 

  • Smith S. J., Wise, M. A., Stokes, G. M., & Ermonds, J. (2004). Near-Term US Biomass Potential: Economics, Land-Use, and Research Opportunities. (Prepared by Battelle Memorial Institute, Joint Global Change Research Institute, Maryland)

    Google Scholar 

  • Spatari, S., Zhang, Y., & Maclean, H. (2005). Life cycle assessment of Switchgrass and corn stover derived ethanol fuelled automobiles. Environ. Sci. Technol., 39, 9750–9758

    Article  CAS  Google Scholar 

  • (S&T)2 Consultants Inc. (2002). Assessment of biodiesel and Ethanol diesel blends, greenhouse gas emissions, exhaust emissions, and policy issues. (Prepared for Natural Resources Canada), Retrieved July, 2007, from http://www.greenfuels.org/biodiesel/pdf/res/ 200209_Assessment_of_Biodiesel_and_EDiesel.pdf

    Google Scholar 

  • Takahashi, E., Ma, J. F., & Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comments Agricultural and Food Chemistry, 2, 99–122

    CAS  Google Scholar 

  • Uherek, E. (2005). Natural gas: Are pipeline leaks warming our planet? Atmospheric Composition Change (ACCENT). Retrieved Aug, 2007, from http://www.atmosphere.mpg.de/enid/ Nr_3_Sept__2__5_methane/energy/R__Methane_emission_from_pipelines_4pd.html

    Google Scholar 

  • Van Der Vorm, P. D. J. (1980). Uptake of Si by five plant species, as influenced by variations in Si-supply. Plant and Soil, 56, 153–156

    Article  Google Scholar 

  • Venuto, B. C. (2007). Producing biomass from sorghum and sorghum by sudangrass hybrids. (Paper presented at the 2nd International Energy Farming Congress, Papenberg, Germany)

    Google Scholar 

  • Von Felde, A. (2007). Advances of energy crops from the viewpoint of the breeder. (Paper presented at the 2nd International Energy Farming Congress, Papenberg, Germany)

    Google Scholar 

  • Wang, M., Wu, M., & Huo, H. (2007). Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters, 2, 1–13

    Article  CAS  Google Scholar 

  • White, E. M. (1973). Overwinter changes in the percent Ca, Mg, K, P and in vegetation and mulch in an eastern South Dakota prairie. Agronomy Journal, 65, 680–681

    Google Scholar 

  • Zan, C. (1998). Carbon Storage in Switchgrass (Panicum virgatum L.) and Short-Rotation Willow (Salix alba x glatfelteri L.) Plantations in Southwestern Quebec. (Masters Thesis prepared for the Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada)

    Google Scholar 

  • Zwart, K., Oudendag, D. & Kuikman, P. (2007). Sustainability of co-digestion. (Paper presented at the 2nd International Energy Farming Congress, Papenberg, Germany)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Samson, R., Lem, C.H., Stamler, S.B., Dooper, J. (2008). Developing Energy Crops for Thermal Applications: Optimizing Fuel Quality, Energy Security and GHG Mitigation. In: Pimentel, D. (eds) Biofuels, Solar and Wind as Renewable Energy Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8654-0_16

Download citation

Publish with us

Policies and ethics