Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 6))

Abstract

Gypsy moth is an outbreak species that was introduced to North America from Europe in 1869, with disastrous consequences. This species is a devastating defoliator in northeastern hardwood forests and continues to spread to the west and south. Four different types of pathogens are of interest for gypsy moth control, making this the invasive arthropod with the greatest diversity of pathogens being utilized for control. Bacillus thuringiensis kurstaki HD-1 is commercially available and is usually applied for control instead of synthetic chemical insecticides. Btk can provide excellent control of outbreak populations and also gives outstanding results in eradication campaigns when gypsy moth is introduced into new areas. The baculovirus LdMNPV, which is highly specific to gypsy moth, is also mass produced but because of its limited availability is only applied in environmentally sensitive areas. While Btk does not cause epizootics in natural gypsy moth populations, LdMNPV has a history of epizootics that have caused crashes in defoliating (high density) populations since the accidental introduction of the virus some time before 1907. The fungal pathogen Entomophaga maimaiga, originating from Japan, first reported in North America in 1989 and probably accidentally introduced, also causes dramatic epizootics in both low and high density gypsy moth populations; activity of this fungus is determined, at least in part, by environmental conditions. Several species of microsporidia are known from the native range of gypsy moth and programs are in place to introduce these microsporidia to North American gypsy moth populations to augment the natural enemies already present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AY, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Appel HM, Schultz JC (1994) Oak tannins reduce effectiveness of Thuricide (Bacillus thuringiensis) in the gypsy moth (Lepidoptera: Lymantriidae). J Econ Entomol 87:1736–1742

    CAS  Google Scholar 

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    PubMed  CAS  Google Scholar 

  • Audtho M, Valaitis AP, Alzate O, Dean DH (1999) Production of chymotrypsin-resistant Bacillus thuringiensis Cry2Aa1 delta-endotoxin by protein engineering. Appl Environ Microbiol 65:4601–4605

    PubMed  CAS  Google Scholar 

  • Baker MD, Vossbrinck CR, Maddox JV, Undeen AH (1994) Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. J Invertebr Pathol 64:100–106

    Article  PubMed  CAS  Google Scholar 

  • Barber KN, Kaupp WJ, Holmes SB (1993) Specificity testing of the nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Can Entomol 125: 1055–1066

    Google Scholar 

  • Barry JW, Skyler PJ, Teske ME, Rafferty JA, Grimm BS (1993) Predicting and measuring drift of Bacillus thuringiensis sprays. Environ Toxicol Chem 12:1977–1989

    Article  Google Scholar 

  • Bauer LS, Miller DL, Maddox JV, McManus ML (1998) Interactions between a Nosema sp. (Microspora: Nosematidae) and nuclear polyhedrosis virus infecting the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). J Invertebr Pathol 74:147–153

    Article  Google Scholar 

  • Becnel JJ, Andreadis TG (1999) Microsporidia in insects. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. Amer Soc Microbiol Press, Washington, D.C. pp 447–501

    Google Scholar 

  • Bishoff DS, Slavicek JM (1996) Characterization of the Lymantria dispar nucleopolyhedrovirus 25K FP gene. J Gen Virol 77:1913–1923

    Article  Google Scholar 

  • Bishoff DS, Slavicek JM (1997) Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus. J Virol 71:8133–8140

    Google Scholar 

  • Blissard GW, Rohrmann GF (1990) Baculovirus diversity and molecular biology. Ann Rev Entomol 35:127–155

    Article  CAS  Google Scholar 

  • Boulton TJ (2004) Responses of nontarget Lepidoptera to Foray 48B®, Bacillus thuringiensis var. kurstaki on Vancouver Island, British Columbia, Canada. Environ Toxicol Chem 23:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Boulton TJ, Otvos IS, Halwas KL, Rohifs DA (2007) Recovery of nontarget Lepidoptera on Vancouver Island, Canada: one and four years after a gypsy moth eradication program. Environ Toxicol Chem 26:738–748

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, Gill S, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  PubMed  CAS  Google Scholar 

  • Broderick NA, Goodman RM, Handelsman J, Raffa K (2003) Effect of host diet and insect source on synergy of gypsy moth (Lepidoptera: Lymantriidae) mortality to Bacillus thuringiensis subsp. kurstaki by zwittermicin A. Environ Entomol 32:387–391

    Google Scholar 

  • Broderick, NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacullus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199

    Article  PubMed  CAS  Google Scholar 

  • Cali A, El Garhy M (1991) Ultrastructural study of the development of Pleistophora schubergi Zwölfer, 1927 (Protozoa, Microsporida) in larvae of the spruce budworm, Choristoneura fumiferana and its subsequent taxonomic change to the genus Endoreticulatus. J Protozool 38:271–278

    Google Scholar 

  • Cameron EA, Reeves RM (1990) Carabidae (Coleoptera) associated with gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae) populations subjected to Bacillus thuringiensis Berliner treatments in Pennsylvania USA. Can Entomol 122:123–130

    Google Scholar 

  • Cate JR, Hinkle MK (1994) Integrated pest management: The path of a paradigm. Natl Audubon Soc Special Rep. 43 pp

    Google Scholar 

  • Charles J-F, Delécluse A, Nielsen-Le Roux C (eds) (2000) Entomopathogenic bacteria: From laboratory to field application. Kluwer Acad Publ, Dordrecht, Netherlands

    Google Scholar 

  • Cook SP, Webb RE, Thorpe KW, Podgwaite JD, White GB (1997) Field examination of the influence of azadirachtin on gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. J Econ Entomol 90:1267–1272

    CAS  Google Scholar 

  • Cook SP, Webb RE, Podgwaite JD, Reardon RC (2003) Increased mortality of gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) exposed to gypsy moth nuclear polyhedrosis virus in combination with the phenolic glycoside salicin. J Econ Entomol 96:1662–1667

    PubMed  CAS  Google Scholar 

  • Couch TL (2000) Industrial fermentation and formulation of entomopathogenic bacteria. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: From laboratory to field application. Kluwer Academic Publishers, Dordrecht, Netherlands. pp 297–316

    Google Scholar 

  • Cunningham JC, Brown KW, Payne NJ, Mickle RE, Grant GG, Fleming RA, Robinson A, Curry RD, Langevin D, Burns T (1997) Aerial spray trials in 1992 and 1993 against gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), using nuclear polyhedrosis virus with and without an optical brightener compared to Bacillus thuringiensis. Crop Prot 16:15–23

    Article  Google Scholar 

  • D’Amico VD, Elkinton JS, Dwyer G, Willis RB, Montgomery ME (1998) Foliage damage does not affect within-season transmission of an insect virus. Ecology 79:1104–1110

    Google Scholar 

  • D’Amico VD, Elkinton JS, Podgwaite JD, Buonaccorsi JP, Dwyer G (2005) Pathogen clumping: an explanation for non-linear transmission of an insect virus. Ecol Entomol 30:383–390

    Article  Google Scholar 

  • David L, Mirchev P, Pilarska D (1989) Application of the microsporidian Nosema sp. to biological protection of oak forests from the gypsy moth, Lymantria dispar L. Acta Entomol Bohemoslov 86:269–274

    Google Scholar 

  • David L, Novotny J (1990) Laboratory activity and field effect of Nosema lymantriae Weiser (Microsporidia) on larvae on the gypsy moth, Lymantria dispar L. Biologia 45:3–79

    Google Scholar 

  • de Amorim GV, Whittome B, Shore B, Levin DB (2001) Identification of Bacillus thuringiensis subsp. kurstaki strain HD-1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B. Appl Environ Microbiol 67:1035–1043

    Article  Google Scholar 

  • DellaSala DA, Olson DM, Barth SE, Crane SL, Primm SA (1995) Forest health: Moving beyond rhetoric to restore healthy landscapes in the inland Northwest. Wildlife Soc Bull 23:346–356

    Google Scholar 

  • Doane CC (1970) Primary pathogens and their role in the development of an epizootic in the gypsy moth. J Invertebr Pathol 15, 21–33

    Article  Google Scholar 

  • Doane CC, McManus ML (eds) (1981) The gypsy moth: Research toward integrated pest management. USDA Forest Service Tech Bull 1584

    Google Scholar 

  • Dubois NR (1981) Bacillus thuringiensis. In: Doane CC, McManus ML (eds) The gypsy moth: Research toward integrated pest management. USDA Forest Service Tech Bull 1584 pp 455–461

    Google Scholar 

  • Dubois NR (1986) Synergism between beta-exotoxin and Bacillus thuringiensis ssp. kurstaki HD-1 in gypsy moth, Lymantria dispar, larvae. J Invertebr Pathol 48:146–151

    Article  CAS  Google Scholar 

  • Dubois NR, Dean DH (1995) Synergism between CryIA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environ Entomol 24:1741–1747

    Google Scholar 

  • Dubois NR, Reardon RC, Kolodny-Hirsch DM (1988) Field efficacy of the NRD-12 strain of Bacillus thuringiensis against gypsy moth (Lepidoptera: Lymantriidae). J Econ Entomol 81:1672–1677

    Google Scholar 

  • Dubois NR, Reardon RC, Mierzejewski K (1993) Field efficacy and deposit analysis of Bacillus thuringiensis, Foray 48B, against gypsy moth (Lepidoptera: Lymantriidae). J Econ Entomol 86:26–33

    Google Scholar 

  • Dubois NR, Mierzejewski K, Reardon RC, McLane W, Witcosky JJ (1994) Bacillus thuringiensis field applications: effect of nozzle type, drop size, and application timing on efficacy against gypsy moth. J Environ Sci Heal B 29:679–695

    Google Scholar 

  • Dulmage HT (1970) Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J Invertebr Pathol 15:232–239

    Article  Google Scholar 

  • Dwyer G, Elkinton JS (1995) Host dispersal and the spatial spread of insect pathogens. Ecol 76:1262–1275

    Article  Google Scholar 

  • Dwyer G, Elkinton JS, Buonaccorsi JP (1997) Host heterogeneity in susceptibility and disease dynamics: Tests of a mathematical model. Am Nat 150:685–707

    Article  PubMed  CAS  Google Scholar 

  • Dwyer G, Firestone J, Stevens TE (2005) Should models of disease dynamics in herbivorous insects include the effects of variability in host-plant foliage quality? Am Nat 165:16–31

    Article  PubMed  Google Scholar 

  • Elkinton JS (2003) Gypsy moth. In Resh VH, Cardé RT (eds) Encyclopedia of insects, Academic Press, Amsterdam. pp 493–497

    Google Scholar 

  • Elkinton JS, Liebhold AS (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596

    Google Scholar 

  • Elkinton JS, Hajek AE, Boettner GH, Simons EE (1991) Distribution and apparent spread of Entomophaga maimaiga (Zygomycetes: Entomophthorales) in gypsy moth (Lepidoptera: Lymantriidae) populations in North America. Environ Entomol 20:1601–1605

    Google Scholar 

  • Erb SL, Bourchier RS, van Frankenhuyzen K, Smith SM (2001) Sublethal effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the tachinid parasitoid Compsilura conncinata (Diptera: Tachinidae). Environ Entomol 30:1174–1181

    Google Scholar 

  • Evans HF (1986) Ecology and epizootiology of baculoviruses. In: Federici BA, Granados RR (eds) The biology of baculoviruses. Vol 2, CRC Press, Boca Raton, FL. pp 89–132

    Google Scholar 

  • Falchieri D, Mierzejewski K, Maczuga S (1995) Effects of droplet density and concentration on the efficacy of Bacillus thuringiensis and carbaryl against gypsy moth larvae (Lymantria dispar L.). J Environ Sci Heal B 30:535–548

    Google Scholar 

  • Farrar RR, Ridgway RL (1995) Enhancement of activity of Bacillus thuringiensis Berliner against four lepidopterous insect pests by nutrient-based phagostimulants. J Entomol Sci 30:29–42

    Google Scholar 

  • Federici B (2005) Insecticidal bacteria: An overwhelming success for invertebrate pathology. J Invertebr Pathol 89:30–38

    Article  PubMed  Google Scholar 

  • Gaugler RR, Brooks WM (1975) Sublethal effects of infection by Nosema heliothidis in the corn earworm, Heliothis zea. J Invertebr Pathol 26:57–63

    Article  Google Scholar 

  • Gill EE, Fast NM (2006) Assessing the microsporidia-fungal relationship: Combined phylogenetics analysis of eight genes. Gene 375:103–109

    Article  PubMed  CAS  Google Scholar 

  • Glare T, O’Callaghan M (2000) Bacillus thuringiensis: Biology ecology and safety. J Wiley & Sons, NY

    Google Scholar 

  • Glowacka-Pilot B (1983) Rola patogenow w przebiegu gradacji brudnicy neiparki (Lymantria dispar L.) na Bagnach Beibrzanskich w latach 1976–1978. Prace Instytutu Badawczego Lesnictwa Poland, no 609

    Google Scholar 

  • Goertz D, Hoch G (2008) Vertical transmission and overwintering of microsporidia in the gypsy moth, Lymantriae dispar. J Invertebr Pathol 99:43–48

    Article  PubMed  Google Scholar 

  • Goertz D, Pilarska D, Kereselidze M, Solter L, Linde A (2004) Studies on the impact of two Nosema isolates from Bulgaria on the gypsy moth (Lymantria dispar L.). J Invertebr Pathol 87:105–113

    PubMed  Google Scholar 

  • Goertz D, Solter LF, Linde A (2007) Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J Invertebr Pathol 95:9–16

    Article  PubMed  Google Scholar 

  • Grove MJ, Hoover K (2006) Intrastadial developmental resistance of third instar gypsy moths (Lymantria dispar L.) to L. dispar nucleopolyhedrovirus. Biol Control 40:355–361

    Article  Google Scholar 

  • Hajek AE (1997) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in central New York. Biol Control 10:58–68

    Article  Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of the Lepidoptera-specific mycopathogen Entomophaga maimaiga. Microbiol Molecul Biol Rev 63:814–835

    CAS  Google Scholar 

  • Hajek AE (2001) Larval behavior in Lymantria dispar increases risk of fungal infection. Oecologia 126:285–291

    Article  Google Scholar 

  • Hajek AE, Webb RE (1999) Inoculative augmentation of the fungal entomopathogen Entomophaga maimaiga as a homeowner tactic to control gypsy moth (Lepidoptera: Lymantriidae). Biol Control 14:11–18

    Article  Google Scholar 

  • Hajek AE, Humber RA, Elkinton JS, May B, Walsh SRA, Silver JC (1990) Allozyme and RFLP analyses confirm Entomophaga maimaiga responsible for 1989 epizootics in North American gypsy moth populations. Proc Natl Acad Sci 87:6979–6982

    Article  PubMed  CAS  Google Scholar 

  • Hajek AE, Larkin TS, Carruthers RI, Soper RS (1993) Modeling the dynamics of Entomophaga maimaiga (Zygomycetes: Entomophthorales) epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations. Environ Entomol 22:1172–1187

    Google Scholar 

  • Hajek AE, Humber RA, Elkinton JS (1995) The mysterious origin of Entomophaga maimaiga in North America. Am Entomol 41:31–42

    Google Scholar 

  • Hajek AE, Butler L, Walsh SRA, Silver JC, Hain FP, Hastings FL, Odell TM, Smitley DR (1996a) Host range of the gypsy moth (Lepidoptera: Lymantriidae) pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in the field versus laboratory. Environ Entomol 25:709–721

    Google Scholar 

  • Hajek AE, Elkinton JS, Witcosky JJ (1996b) Introduction and spread of the fungal pathogen Entomophaga maimaiga along the leading edge of gypsy moth spread. Environ Entomol 25:1235–1247

    Google Scholar 

  • Hajek AE, Elkinton JS, Humber RA (1997) Entomopathogenic hyphomycetes associated with gypsy moth. Mycologia 89:825–829

    Article  Google Scholar 

  • Hajek AE, Olsen C, Elkinton JS (1999) Dynamics of airborne conidia of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales). Biol Control 16:111–117

    Article  Google Scholar 

  • Hajek AE, Delalibera Jr I, Butler L (2003) Entomopathogenic fungi as classical biological control agents. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, Dordrecht, NL. pp 15–34

    Google Scholar 

  • Hajek AE, Strazanac JS, Wheeler MM, Vermeylen F, Butler L (2004) Persistence of the fungal pathogen Entomophaga maimaiga and its impact on native Lymantriidae. Biol Control 30:466–471

    Article  Google Scholar 

  • Hajek AE, McManus ML, Delalibera Jr I (2005) Catalogue of introductions of pathogens and nematodes for classical biological control of insects and mites. USDA Forest Service FHTET-2005-05. 59 pp http://www.fs.fed.us/foresthealth/technology/pdfs/catalogue.pdf [accessed March 2008]

  • Herms CP, McCullough DG, Bauer LS, Haack RA, Miller DL, Dubois NR (1997) Susceptibity of the endangered Karner blue butterfly (Lepidoptera: Lycaenidae) to Bacillus thuringiensis var. kurstaki used for gypsy moth suppression in Michigan. Grt Lks Entomol 30:125–141

    Google Scholar 

  • Hoch G, Schopf A, Maddox JV (2000) Interactions between an entomopathogenic microsporidium and the endoparasitoid Glyptapanteles liparidis within their host, the gypsy moth larva. J Invertebr Pathol 75:59–68

    Article  PubMed  CAS  Google Scholar 

  • Hoch G, Zubrik M, Novotny J, Schopf A (2001) The natural enemy complex of the gypsy moth, Lymantria dispar (Lep., Lymantriidae), in different phases of its population dynamics in eastern Austria and Slovakia: A comparative study. J Appl Entomol 125:217–227

    Article  Google Scholar 

  • Hoch G, Schafellner C, Henn MW, Schopf A (2002) Alterations in carbohydrate and fatty acid levels of Lymantria dispar larvae caused by a microsporidian infection and potential adverse effects on a co-occurring endoparasitoid, Glyptapanteles liparidis. Arch Insect Biochem Physiol 50:109–120

    Article  PubMed  CAS  Google Scholar 

  • Hoover K, Grove MJ, Su S (2002) Systemic component to intrastadial developmental resistance in Lymantria dispar to its baculovirus. Biol Control 25:92–98

    Article  Google Scholar 

  • Hwang SY, Lindroth RL, Montgomery ME, Shields KS (1995) Aspen leaf quality affects gypsy moth (Lepidoptera: Lymantriidae) susceptibility to Bacillus thuringiensis. J Econ Entomol 88:278–282

    Google Scholar 

  • Il’inykh AV (2007) Epizootiology of baculoviruses. Biol Bull 34:434–441

    Article  Google Scholar 

  • Ironside JE (2007) Multiple losses of sex within a single genus of Microsporidia. BMC Evol Biol 7, Art No 48

    Google Scholar 

  • James RR, Miller JC, Lighthart B (1993) Bacillus thuringiensis var. kurstaki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae). J Econ Entomol 86:334–339

    Google Scholar 

  • Jeffords MR, Maddox JV, O’Hayer KW (1986) Microsporidian spores in gypsy moth larval silk: a possible route of horizontal transmission. J Invertebr Pathol 49:332–333

    Article  Google Scholar 

  • Jeffords MR, Maddox JV, McManus ML, Webb RE, Wieber A (1989) Evaluation of the overwintering success of two European microsporidia inoculatively released into gypsy moth populations in Maryland, USA. J Invertebr Pathol 53:235–240

    Article  Google Scholar 

  • Jenkins JL, Lee MK, Valaitis AP, Curtiss A, Dean DH (2000) Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J Biol Chem 275:14423–14431

    Article  PubMed  CAS  Google Scholar 

  • Johnson DM, Liebhold AM, Bjornstad ON (2006) Geographical variation in the periodicity of gypsy moth outbreaks. Ecography 29:367–374

    Article  Google Scholar 

  • Keohane EM, Weiss LM (1999) The structure, function, and composition of the microsporidian polar tube. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. Amer Soc Microbiol Press, Washington, D.C. pp 196–224

    Google Scholar 

  • Keating ST, Schultz JC, Yendol WG (1990) The effect of diet on gypsy moth (Lymantria dispar) larval midgut pH, and its relationship with larval susceptibility to a baculovirus. J Invertebr Pathol 56:317–326

    Article  Google Scholar 

  • Kogan PH, Hajek AE (2000) Formation of azygospores by the insect pathogenic fungus Entomophaga maimaiga in cell culture. J Invertebr Pathol 75:193–201

    Article  PubMed  CAS  Google Scholar 

  • Lautenschlager RA, Podgwaite JD (1977) Passage of infectious nuclear polyhedrosis virus through the alimentary tracts of two small mammal predators of the gypsy moth. Environ Entomol 6:737–738

    Google Scholar 

  • Lautenschlager RA, Rothenbacher H, Podgwaite JD (1978) Response of small mammals to aerial application of the nucleopolyhedrosis virus of the gypsy moth, Lymantria dispar. Environ Entomol 7:676–684

    Google Scholar 

  • Lautenschlager RA, Rothenbacher H, Podgwaite JD (1979) Response of birds to aerial application of the nucleopolyhedrosis virus of the gypsy moth, Lymantria dispar. Environ Entomol 8:760–764

    Google Scholar 

  • Lautenschlager RA, Podgwaite JD, Watson DE (1980) Natural occurrence of the nucleopolyhedrosis virus of the gypsy moth Lymantria dispar (Lepidoptera: Lymantriidae) in wild birds and mammals. Entomophaga 25:261–268

    Article  Google Scholar 

  • Lee MK, Curtiss A, Alcantara E, Dean DH (1996) Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Appl Environ Microbiol 62:583–586

    PubMed  CAS  Google Scholar 

  • Leonard D (1974) Recent developments in ecology and control of the gypsy moth. Annu Rev Entomol 19:197–229

    Article  Google Scholar 

  • Leonard D (1981) Bioecology of the gypsy moth. In: Doane CC, McManus ML (eds) The gypsy moth: Research toward integrated pest management. USDA Forest Service Tech Bull 1584. pp 9–29

    Google Scholar 

  • Leuschner WA, Young JA, Ravlin FW (1996) Potential benefits of slowing the gypsy moth’s spread. S J Appl For 120:65–73

    Google Scholar 

  • Lewis FB (1981) Gypsy moth nucleopolyhedrosis virus. In: Doane CC, McManus ML (eds) The gypsy moth: Research toward integrated pest management. USDA Forest Service Tech Bull 1584. pp 454–455

    Google Scholar 

  • Lewis FB, Rollinson WD, Yendol WG (1981) Laboratory evaluations. In: Doane CC, McManus ML (eds) The gypsy moth: Research toward integrated pest management. USDA Forest Service Tech Bull 1584. pp. 455–461

    Google Scholar 

  • Liang Y, Patel SS, Dean DH (1995) Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly related to toxicity. J Biol Chem 270:24719–24724

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Dean DH (1994) Location of a lepidopteran specificity region in insecticidal crystal protein CryIIA from Bacillus thuringiensis. Mol Microbiol 13:569–575

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Patel SS, Dean DH (1995) Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem 270:24719–24724

    Article  PubMed  CAS  Google Scholar 

  • Liebhold A, Luzader E, Reardon R, Bullard A, Roberts A, Ravlin W, Delost S, Spears B (1996) Use of a geographic information system to evaluate regional treatment effects in a gypsy moth (Lepidoptera: Lymantriidae) management program. J Econ Entomol 89:1192–1203

    Google Scholar 

  • Lord JC (2005) From Metchnikoff to Monsanto and beyond: The path of microbial control. J Invertebr Pathol 89:19–29

    Article  PubMed  Google Scholar 

  • Maddox JV, Baker M, Jeffords MR, Kuras M, Linde A, McManus M, Solter L, Vavra J, Vossbrinck C (1999) Nosema portugal n.sp., isolated from gypsy moths (Lymantria dispar L.) collected in Portugal. J Invertebr Pathol 73:1–14

    Article  PubMed  Google Scholar 

  • Malakar R, Elkinton JS, Carroll SD, D’Amico VD (1999) Interactions between two gypsy moth (Lepidoptera: Lymantriidae) pathogens: Nucleopolyhedrovirus and Entomophaga maimaiga (Zygomycetes: Entomophthorales): Field studies and a simulation model. Biol Control 16:189–198

    Article  Google Scholar 

  • Marshall MR, Cooper RJ, Dececco JA, Strazanac J, Butler L (2002) Effects of experimentally reduced prey abundance on the breeding ecology of the red-eyed vireo. Ecol Applic 12:261–280

    Article  Google Scholar 

  • Martin PA (2004) A stilbene optical brightener can enhance bacterial pathogenicity to gypsy moth (Lepidoptera: Lymantriida) and Colorado potato beetle (Coleoptera: Chrysomelidae). Biocontr Sci Technol 14:375–383

    Article  Google Scholar 

  • Martin PAW, Blackburn MB (2007) Using combinatorics to screen Bacillus thuringiensis isolates for toxicity against Manduca sexta and Plutella xylostella. Biol Control 42:226–232

    Article  Google Scholar 

  • McManus ML, Solter L (2003) Microsporidian pathogens in European gypsy moth populations. Proc: ecology, survey, and management of forest insects. USDA Forest Service, NE Res Stn Gen Tech Rep NE-311. pp 44–51

    Google Scholar 

  • Miller JC (1990) Field assessment of the effects of a microbial pest control agent on nontarget Lepidoptera. Am Entomol 36:135–139

    Google Scholar 

  • Mott M, Smitley D (2000) Impact of Bacillus thuringiensis application on Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) and LdMNPV-induced mortality of gypsy moth (Lepidoptera: Lymantriiidae). Environ Entomol 29:1312–1322

    Google Scholar 

  • Murray KD, Elkinton JS (1989) Environmental contamination of egg masses as a major component of transgenerational transmission of gypsy moth nuclear polyhedrosis virus (LdMNPV). J Invertebr Pathol 53:324–334

    Article  Google Scholar 

  • Murray KD, Shields KS, Burand JP, Elkinton JS (1991) The effect of gypsy moth metamorphosis on the development of nuclear polyhedrosis virus infection. J Invertebr Pathol 57:352–361

    Article  Google Scholar 

  • Nielsen C, Milgroom MG, Hajek AE (2005) Genetic diversity in the gypsy moth fungal pathogen Entomophaga maimaiga from founder populations in North America and source populations in Asia. Mycol Res 109:941–950

    Article  PubMed  CAS  Google Scholar 

  • Peacock JW, Schweitzer DF, Carter JL, Dubois NR (1998) Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environ Entomol 27:450–457

    Google Scholar 

  • Pemberton RW, Lee JH, Reed DK, Carlson RW, Han HY (1993) Natural enemies of the Asian gypsy moth (Lepidoptera: Lymantriidae) in South Korea. Ann Entomol Soc Amer 86:423–440

    Google Scholar 

  • Pilarska DK, Solter LF, Maddox JV, McManus ML (1998) Microsporidia from gypsy moth (Lymantria dispar L.) populations in Central and Western Bulgaria. Acta Zool Bulgarica 50:109–113

    Google Scholar 

  • Pilarska DK, Solter LF, Kereselidze M, Linde A, Hoch G (2006) Microsporidian infections in Lymantria dispar larvae: Interactions and effects of multiple species infections on pathogen horizontal transmission. J Invertebr Pathol 93:105–113

    Article  PubMed  Google Scholar 

  • Podgwaite JD (1981) Natural disease within dense gypsy moth populations. In: Doane CC, McManus ML (eds) The gypsy moth: Research toward integrated pest management. US Dept. of Agric Tech Bull 1584. pp 125–134

    Google Scholar 

  • Podgwaite J, Shields K, Zerillo R, Bruen R (1979) Environmental persistence of the nucleopolyhedrosis virus of the gypsy moth. Environ Entomol 8:523–536

    Google Scholar 

  • Podgwaite JD, Dubois NR, Reardon RC, Witcosky J (1993) Retarding outbreak of low-density gypsy moth (Lepidoptera: Lymantriidae) populations with aerial applications of Gypchek and Bacillus thuringiensis. J Econ Entomol 86:730–734

    Google Scholar 

  • Popham HJR, Bishoff DS, Slavicek JM (2001) Both Lymantria dispar nucleopolyhedrovirus enhancin genes contribute to viral potency. J Virol 75:8639–8648

    Article  PubMed  CAS  Google Scholar 

  • Purrini VK, Skatulla U (1978) Über die natürlichen Krankheiten des Schwammspinners, Lymantria dispar L. (Lep., Lymantriidae) in Sardinien, Italien. Anz Schadlingskd PFL 51:9–11

    Google Scholar 

  • Raimo B, Reardon RC, Podgwaite JD (1977) Vectoring gypsy moth nuclear polyhedrosis virus by Apanteles melanoscelus (Hymenoptera:Braconidae). Entomophaga 22:207–216

    Article  Google Scholar 

  • Raimondo S, Pauley TK, Butler L (2003) Potential impacts of Bacillus thuringiensis var. kurstaki on five salamandar species in West Virginia. NE Naturalist 10:25–38

    Google Scholar 

  • Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (1996) Protein engineering of Bacillus thuringiensis delta-endotoxin: Mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci USA 93:14338–14343

    Article  PubMed  CAS  Google Scholar 

  • Rastall K, Kondo V, Strazanac JS, Butler L (2003) Lethal effects of biological insecticide application on nontarget lepidopterans in two Appalachian forests. Environ Entomol 32:1364–1369

    Article  Google Scholar 

  • Reardon RC, Podgwaite JD (1976) Disease-parasitoid relationships in natural populations of Lymantria dispar in the northeastern United States. Entomophaga 21:333–341

    Article  Google Scholar 

  • Reardon RC, Podgwaite JD (1994) Summary of efficacy evaluation using aerially applied Gypchek against gypsy moth in the U.S.A. J Environ Sci Heal B 29:739–756

    Google Scholar 

  • Reardon RC, Dubois N, McLane W (1994) Bacillus thuringiensis for managing gypsy moth: A review. USDA Forest Service Tech Transfer FHM-NC-01-94

    Google Scholar 

  • Reardon RC, Podgwaite J, Zerillo R (1996) Gypchek-The gypsy moth nucleopolyhedrosis virus product. USDA Forest Service Tech Transfer FHTET-96-16

    Google Scholar 

  • Reiff W (1911) The wilt disease or flacherie of the gypsy moth. Contrib Entomol Lab, Bussey Inst, Harvard Univ. p 36

    Google Scholar 

  • Riegel CI, Slavicek JM (1997) Characterization of the replication cycle of the Lymantria dispar nuclear polyhedrosis virus. Virus Res 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Reilly JR, Hajek AE (2008) Density-dependent resistance of the gypsy moth Lymantria dispar to its nucleopolyhedrovirus, and the consequences for population dynamics. Oecologia 154:691–701

    Article  PubMed  Google Scholar 

  • Ridgway RL, Thorpe KW, Webb RE, Venables L (1994) Gypsy moth management in suburban parks: Program evaluation. J Entomol Sci 29:557–569

    Google Scholar 

  • Romanyk N (1966) Natural enemies of Lymantria dispar in Spain. Bol Serv Plagas For 9:157–163

    Google Scholar 

  • Sample BE, Butler L, Zivkovich C, Whitmore RC, Reardon R (1996) Effects of Bacillus thuringiensis Berliner var. kurstaki and defoliation by the gypsy moth (Lymantria dispar L.) (Lepidoptera: Lymmantriidae) on native arthropods in West Virginia. Can Entomol 128:573–592

    Google Scholar 

  • Schweitzer D (2004) Gypsy moth (Lymantria dispar): Impacts and options for biodiversity-oriented land managers. NatureServe, Arlington, VA. 59 pp

    Google Scholar 

  • Seastedt TR, Crossley DA, Hargrove WW (1983) The effects of low-level consumption by canopy arthropods on the growth and nutrient dynamics of black locust and red maple trees in the southern Appalachians. Ecology 64:1040–1048

    Article  Google Scholar 

  • Shapiro M, Robertson JL (1992) Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculovirus activity by optical brighteners. J Econ Entomol 85:1120–1124

    CAS  Google Scholar 

  • Sheppard CA, Shapiro M (1994) Physiological and nutritional effects of a fluorescent brightener on nuclear polyhedrosis virus-infected Lymantria dispar (L.) larvae (Lepidoptera: Lymantriidae). Biol Control 4:404–411

    Article  Google Scholar 

  • Sidor C (1976) Oboljenja Izazvana microorganizmima kod nekih Lymantriidae u Jugoslavifi I Njihov Znacaj za entomofaunu. (Diseases provoked with microorganisms by some Limantriidae in Yugoslavia and their importance for entomofauna.) Arh Biol Nauka Beograd 28:127–137

    Google Scholar 

  • Siegel JP, Maddox JV, Ruesink WG (1986) Lethal and sublethal effects of Nosema pyrausta on the European corn borer, Ostrinia nubilalis in Central Illinois USA. J Invertebr Pathol 48:167–173

    Article  Google Scholar 

  • Sierpinska A (2000) Preliminary results on the occurrence of microsporidia of the gypsy moth (Lymantria dispar L.) from differenct habitats of Poland. IOBC WPRS Bull 23:291–295

    Google Scholar 

  • Slavicek JM, Mercer MJ, Kelly ME, Hayes-Plazolles N (1996) Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture. J Invertebr Pathol 67:153–160

    Article  Google Scholar 

  • Slavicek JM, Mercer MJ, Pohlman D, Kelly ME, Bishoff DS (1998) Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion. J Invertebr Pathol 72:28–37

    Article  PubMed  CAS  Google Scholar 

  • Smitley DR, Bauer LS, Hajek AE, Sapio FJ, Humber RA (1995) Introduction and establishment of Entomophaga maimaiga, a fungal pathogen of gypsy moth (Lepidoptera: Lymantriidae) in Michigan. Environ Entomol 24:1685–1645

    Google Scholar 

  • Smith P (1999) Interactions between a tachinid parasitoid and a fungal pathogen of gypsy moth. Proc Ann Mtg Soc Invertebr Pathol, Irvine, CA 22–27 August. p 70

    Google Scholar 

  • Solter LF, Becnel JJ (2003) Environmental safety of microsporidia. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides: Need and methods for risk assessment. Kluwer Academic Publishers, Netherlands. pp 93–118

    Google Scholar 

  • Solter LF, Maddox JV (1998) Physiological host specificity of microsporidia as an indicator of ecological host specificity. J Invertebr Pathol 71:207–216

    Article  PubMed  CAS  Google Scholar 

  • Solter LF, Maddox JV, McManus ML (1997) Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J Invertebr Pathol 69:135–150

    Article  PubMed  Google Scholar 

  • Solter LF, Pilarska DK, Vossbrinck CF (2000) Host specificity of microsporidia pathogenic to forest Lepidoptera. Biol Control 19:48–56

    Article  Google Scholar 

  • Solter LF, Siegel JP, Pilarska DK, Higgs MC (2002) The impact of mixed infection of three species of microsporidia isolated from the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). J Invertebr Pathol 81:103–113

    Article  PubMed  Google Scholar 

  • Soper RS, Shimazu M, Humber RA, Ramos ME, Hajek AE (1988) Isolation and characterization of Entomophaga maimaiga sp. nov., a fungal pathogen of gypsy moth, Lymantria dispar, from Japan. J Invertebr Pathol 51:229–241

    Article  Google Scholar 

  • Sopuck L, Ovaska K, Whittington B (2002) Responses of songbirds to aerial spraying of the microbial insectide Bacillus thuringiensis var. kurstaki (Foray 48B®) on Vancouver Island, British Columbia, Canada. Environ Toxicol Chem 21:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Speare AT, Colley R (1912) The artificial use of the brown-tail fungus in Massachusetts, with practical suggestions for private experiment, and a brief note on a fungous disease of the gypsy caterpillar. Wright & Potter, Boston

    Google Scholar 

  • Sundaram KMS, Sundaram A, Hammock BD (1994) Persistence of Bacillus thuringiensis deposits in a hardwood forest after aerial application of a commercial formulation at two dosage rates. J Environ Sci Heal B 29:999–1052

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego, CA

    Google Scholar 

  • Thiem SM, Du X, Quentin ME, Berner MM (1996) Identification of a baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line. J Virol 70:2221–2229

    PubMed  CAS  Google Scholar 

  • Thorpe KW, Podgwaite JD, Slavicek JM, Webb RE (1998) Gypsy moth (Lepidoptera: Lymantriidae) control with ground-based hydraulic applications of Gypchek, in vitro-produced virus, and Bacillus thuringiensis. J Econ Entomol 91:875–880

    Google Scholar 

  • USDA Forest Service (2008) Gypsy Moth Digest. http://na.fs.fed.us/fhp/gm [accessed 3 March 2008]

  • Valaitis AP, Jenkins JL, Lee MK, Dean DH, Garner KJ (2001) Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis CryIA toxins with high affinity. Arch Insect Biochem Physiol 46:186–200

    Article  PubMed  CAS  Google Scholar 

  • Valent Biosciences (2001) Protecting our forests-protecting our future. Forestry technical manual. Valent Biosciences, USA

    Google Scholar 

  • van Frankenhuyzen K, Wiesner CJ, Riley CM, Nystrom C, Howard CA, Howse GM (1991) Distribution and activity of spray deposits in an oak canopy following aerial application of diluted and undiluted formulations of Bacillus thuringiensis Berliner against the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Pesticide Sci 33:159–168

    Article  Google Scholar 

  • Vavra J, Hylis M, Vossbrinck CR, Pilarska DK, Linde A, Weiser J, McManus ML, Hoch G, Solter LF (2006) Vairimorpha disparis n. comb. (Microsporidia: Burenellidae): A redescription of the Lymantria dispar (L.) (Lepidoptera: Lymantriidae) microsporidium, Thelohania disparis Timofejeva 1956. J Euk Microbiol 53:292–304

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Strazanac J, Butler L (2000) Abundance, diversity, and activity of ants (Hymenoptera: Formicidae) in oak-dominated mixed Appalachian forests treated with microbial pesticides. Environ Entomol 29:579–586

    Google Scholar 

  • Wang CY, Solter LF, T’sui WH, Wang CH (2005) An Endoreticulatus species from Ocinara lida (Lepidoptera: Bombycidae) in Taiwan. J Invertebr Pathol 89:123–135

    Article  PubMed  Google Scholar 

  • Webb RE, Shapiro M, Podgwaite JD, Reardon RC, Tatman KM, Venables L, Kolodny-Hirsch DM (1989) Effect of aerial spraying with Dimilin, DiPel or Gypchek on two natural enemies of the gypsy moth (Lepidoptera: Lymantriidae). J Econ Entomol 82:1695–1701

    Google Scholar 

  • Webb RE, White GB, Thorpe KW, Talley SE (1999) Quantitative analysis of a pathogen-induced premature collapse of a “leading edge” gypsy moth (Lepidoptera: Lymantriidae) population in Virginia. J Entomol Sci 34:84–100

    Google Scholar 

  • Webb RE, Shapiro M, Thorpe KW, Peiffer RA, Fuester RW, Valenti MA, White GB, Podgwaite JD (2001) Potentiation by a granulosis virus of Gypchek, the gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus product. J Entomol Sci 36:169–176

    Google Scholar 

  • Webb RE, Bair MW, White GB, Thorpe KW (2004) Expression of Entomophaga maimaiga at several gypsy moth (Lepidoptera: Lymantriidae) population densities and the effect of supplemental watering. J Entomol Sci 39:223–234

    Google Scholar 

  • Weiser J, Novotny J (1987) Field application of Nosema lymantriae against the gypsy moth, Lymantria dispar L. J Appl Ent 104:58–62

    Article  Google Scholar 

  • Weseloh RM (1998) Possibility for recent origin of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in North America. Environ Entomol 27:171–177

    Google Scholar 

  • Weseloh RM (2003a) People and the gypsy moth: A story of human interactions with an invasive species. Am Entomol 49(3):180–190

    Google Scholar 

  • Weseloh RM (2003b) Short and long range dispersal in the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen, Entomophaga maimaiga (Zygomycetes: Entomophthorales). Environ Entomol 32:111–122

    Google Scholar 

  • Weseloh RM (2004) Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol Control 29:138–144

    Article  Google Scholar 

  • Weseloh RM, Andreadis TG, Moore REB, Anderson JF, Dubois NR, Lewis FB (1983) Field confirmation of a mechanism causing synergism between Bacillus thuringiensis and the gypsy moth parasitoid Apanteles melanoscelus. J Invertebr Pathol 41:99–103

    Article  Google Scholar 

  • Whaley WH, Anhold J, Schaalje GB (1998) Canyon drift and dispersion of Bacillus thuringiensis and its effects on select nontarget lepidopterans in Utah. Environ Entomol 27:539–548

    Google Scholar 

  • White GB, Webb RE (1994) Survival of dipteran parasitoids (Diptera: Tachinidae) during a virus-induced gypsy moth population collapse. Proc Entomol Soc Wash 96:27–30

    Google Scholar 

  • Wittner M (1999) Historic prospective on the microsporidia: Expanding horizons. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. Amer Soc Microbiol Press, Washington, D.C. pp 447–501

    Google Scholar 

  • Woods SA, Elkinton JS, Podgwaite JD (1989) Acquisition of nuclear polyhedrosis virus from tree stems by newly emerged gypsy moth (Lepidoptera: Lymantriaidae) larvae. Environ Entomol 18:298–301

    Google Scholar 

  • Woods SA, Elkinton JS, Murray KD, Liebhold AM, Gould JR, Podgwaite JD (1991) Transmission dynamics of a nuclear polyhedrosis virus and predicting mortality in gypsy moth (Lepidoptera: Lymantriidae) populations. J Econ Entomol 84:423–430

    Google Scholar 

  • Yendol WG, Bryant JE, McManus ML (1990) Penetration of oak canopies by a commercial preparation of Bacillus thuringiensis applied by air. J Econ Entomol 83:173–179

    Google Scholar 

  • Zelinskaya LM (1980) Role of microsporidia in the abundance dynamics of the gypsy moth (Porthetria dispar) in forest plantings along the lower Dnepr River (Ukrainian Republic, USSR). Vestnik zoology (Zoology Bulletin) 1:57–62

    Google Scholar 

  • Zelinskaya LM (1981) Using the index of imago infection by spores of microsporidia for predicting the reproduction of Lymantria dispar. Lesnoye Khozyaistvo (Forestry) 4:58–60

    Google Scholar 

  • Zwölfer W (1927) Die pebrine des schwammspinners (Porthetria dispar L.) and goldafters (Nygmia phaeorrhoea Don. = Euproctis chrysorrhoea L.), eine neue wirtschaftlich bedeutungsvolle infektionskrankheit. Verh Dtsch Ges Angew Entomol 6:98–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solter, L.F., Hajek, A.E. (2009). Control of Gypsy Moth, Lymantria dispar, in North America since 1878. In: Hajek, A.E., Glare, T.R., O’Callaghan, M. (eds) Use of Microbes for Control and Eradication of Invasive Arthropods. Progress in Biological Control, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8560-4_11

Download citation

Publish with us

Policies and ethics