Skip to main content

Ab Initio Approaches to Designing Thermodynamic Properties of Materials

  • Conference paper
Materials Issues for Generation IV Systems

This paper presents a brief overview of recent developments in the application of ab initio calculations to the study of bulk thermodynamic properties and phase equilibria in alloys. We also emphasize the links that presently exist between ab initio methodologies and the Calphad approach to obtain a valuable tool in the calculation of complex, multicomponent phase equilibria often found in industrial alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martin, R.M., 2004, Electronic Structure Basic theory and Practical Methods, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  2. Hohenberg, P., and Kohn, W., Inhomogenous electron gas, Phys. Rev. 136:B864-871.

    Google Scholar 

  3. Kohn, W. and Sham, L.J., 1965, Self-consistent equations including exchange and correlations effects, Phys. Rev. 140:A1133-1138.

    Article  MathSciNet  ADS  Google Scholar 

  4. Hafner, J., 2000, Atomic-scale computational materials science, Acta Mater. 48:71-92.

    Article  CAS  Google Scholar 

  5. http://ElectronicsStructures.org/software.asp

  6. Wallace, D.C., 1998, Thermodynamics of Crystals, Dover Publications Inc. Mineola, New York.

    Google Scholar 

  7. Colinet, C., Wolf, W., Podloucky, R., and Pasturel, A. 2005, Ab initio study of the structural stability ofTiSi2 compounds, Appl. Phys. Lett. 87:41910-41912.

    Article  CAS  Google Scholar 

  8. van de Walle, A., and Ceder, G., 2002, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. of Modern Physics 74:11-38.

    Article  CAS  ADS  Google Scholar 

  9. Robert, G., Pasturel, A., and Siberchicot, B., 2003, Calculated thermodynamic properties of plutonium metal, J. Phys. Condens. Matter 15:8377-8387.

    Article  CAS  ADS  Google Scholar 

  10. Allen, M. P., and Tildesley, D. J., 1987, Computer Simulations of Liquids Clarendon Press, Oxford.

    Google Scholar 

  11. Ducastelle, F., 1991, Order and Phase Stability in Alloys, Elsevier Science, New York.

    Google Scholar 

  12. Zunger, A., 1994, Statics and Dynamics of Alloy Phase Transformations, eds P. Turchi and A. Gonis, Plenum New York, pp. 361-419.

    Google Scholar 

  13. de Fontaine, D., 1994, Cluster approach to order-disorder transformation in alloys, Solid State Phys. 47:33-176.

    Article  Google Scholar 

  14. Zarkevitch, N. A., and Johnson, D. D., 2004, Reliable first-principles alloy thermodynamics via truncated cluster expansions, Phys. Rev. Lett. 92:255702-255705.

    Article  ADS  CAS  Google Scholar 

  15. van der Walle, A., and Ceder, G., 2002, Automating first-principles phase diagram calculations, J. Phase equilibria 23:348-359.

    Article  Google Scholar 

  16. Blum, V., and Zunger, A., 2004, Mixed-basis cluster expansion for thermodynamics of bcc alloys, Phys. Rev. B 70:155108-155124.

    Article  ADS  CAS  Google Scholar 

  17. Hart, G., Blum, V., Walorski, M. J., and Zunger, A., 2005, Evolutionary approach for determining first-principles Hamiltonians, Nature Materials 4:391-394.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Berne, C., Sluiter, M., Kawazoe, Y., Hansen, T., and Pasturel, A., 2001, Site occupancy in the Re-W sigma phase, Phys. Rev. B 64:144103-144111.

    Article  ADS  CAS  Google Scholar 

  19. Sluiter, M., Pasturel, A., and Kawazoe, Y., 2003, Site occupation in the Ni-Nb μ phase, Phys. Rev. B 67:174203-174213.

    Article  ADS  CAS  Google Scholar 

  20. Dupin, N., Fries, S. G., Joubert, J. M., Sundman, B., Sluiter, M., Kawazoe, Y., and Pasturel, A., 2006, Using first-principles results to calculate finite-temperature thermodynamic properties of the Ni-Nb μ phase in the Bragg-Williams approximation. Phil. Mag. 86:1631-1641.

    Article  CAS  ADS  Google Scholar 

  21. Wolverton, C., Yan, X. Y., Vijayaraghavan, R., and Ozolins, V., 2002, Acta Mater. 50:2187-2197.

    Article  CAS  Google Scholar 

  22. Jiang, M., Oikawa, K., Ikeshoji, T., Wulff, L., and Ishida, K., 2001, Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems, J. Phase Equilibria 22:406-417.

    Article  CAS  Google Scholar 

  23. Stein, F., Sauthoff, G., and Palm, M., 2002, Experimental Determination of Intermetallic Phases, Phase Equilibria, and Invariant Reaction Temperatures in the FeZr System, J. Phase Equilibria 23:480-494.

    Article  CAS  Google Scholar 

  24. Barberis, P., Dupin, N., Lemaignan, C., Pasturel, A., and Grange, J. M., 2005, Microstructure and phase control in Zr-Fe-Cr-Ni alloys: thermodynamic and kinetic aspects, J. of ASTM Int. 2:129-156.

    Google Scholar 

  25. Pisch, A., Jakse, N., Pasturel, A., Harvey, J. P., and Chartrand, P., 2007, Structural stability in the Al-Li-Si system, Appl. Phys. Lett. 90:251902-251904.

    Article  ADS  CAS  Google Scholar 

  26. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., and Ceder, G., 2003, Predicting Crystal Structures with Data Mining of Quantum Calculations, Phys. Rev. Lett. 91:135503-135506.

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Fischer, C., Tibbetts, K. J., Morgan, D., and Ceder, G., 2006, Predicting crystal structure by merging data mining with quantum mechanics, Nature Materials 5:641-646.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Turchi, P., Abrikosov, I., Burton, B., Fries, S., Grimvall, G., Kaufman, L., Korzhavyi, P., Manga, V., Ohno, M., Pisch, A., Scott, A., and Zhang, W., 2007, Interface between quantum-mechanical-based approaches, experiments, and Calphad methodology, Comp. Coupling of Phase Diagrams and Thermo. 31:4-27.

    CAS  Google Scholar 

  29. Ansara, I., Chart, T. G., Fernadez-Guillermet, A., Hayes, F. H., Kattner, U. R., Pettifor, D. G., Saunders, N., and Zeng, K., 1997, Thermodynamic Modelling of Selected Topologically Close-packed Intermetallic Compounds, Calphad 21:171-181.

    Article  CAS  Google Scholar 

  30. Fries, S., and Sundman, B., 2002, Using Re-W σ-phase first-principles results in the Bragg-Williams approximation to calculate finite-temperature thermodynamic properties, Phys. Rev. B 66:12203-12206.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Pasturel, A., Jakse, N. (2008). Ab Initio Approaches to Designing Thermodynamic Properties of Materials. In: Ghetta, V., Gorse, D., Mazière, D., Pontikis, V. (eds) Materials Issues for Generation IV Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8422-5_6

Download citation

Publish with us

Policies and ethics