Skip to main content

Ultradian and Circadian Rhythms: Experiments and Models

  • Chapter
Ultradian Rhythms from Molecules to Mind

Abstract

The importance of both ultradian and circadian rhythms in Nature is well known. In the literature it is possible to find many articles referring to the characteristics and properties of such rhythms and, in some cases, of their mathematical modeling.

However, as far as we know, there is not enough information relating these two types of rhythms either from a biological or mathematical point of view.

In this chapter we describe the main properties of the crayfish circadian rhythm structure and its mathematical simulation through different developmental stages and experimental situations. During the work we revealed the persistence of the ultradian rhythms even when they are masked by circadian rhythms.

Moreover, when transients were analyzed in both models, biological and mathematical, we were led to consider the hypothesis that ultradian rhythms could represent a regression to a primordial vital dynamic state.

Finally, we report on certain new experiments and their mathematical models, where we can observe the initial presence of a circadian rhythm and its subsequent regression to again an ultradian one by the influence of an external disturbance.

It seems that ultradian rhythms arise first in evolution and in ontogeny, preceding in both cases the appearance of circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aréchiga H., Rodríguez-Sosa L. (2002). Distributed circadian rhythmicity in the crustacean nervous system. The crustacean nervous system (ed Wise K.). Springer, Berlin.

    Google Scholar 

  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Biological clocks. Cold Spring Harbor Symp. Quant. Biol. 25:11–27.

    PubMed  CAS  Google Scholar 

  • Barrio R. A., Zhang L., Maini P. (1997). Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bull. Math. Biol. 59(3):517–532.

    Article  PubMed  CAS  Google Scholar 

  • Bünning E. (1973). The physiological clock. Circadian rhythms and chronometry. Springer, New York, 258 pp.

    Google Scholar 

  • Fanjul-Moles M. L., Moreno-Sáenz E., Villalobos-Hiriart N., Fuentes-Pardo B. (1987). ERG circadian rhythm in the course of ontogeny in crayfish. Comp. Biochem. Physiol. 88A(2):213–219.

    Article  Google Scholar 

  • Fuentes-Pardo B., Hernández-Falcón J. (1993). Neurobiology of the circadian clock of crayfish. Trans. Com. Biochem. Physiol. 1:635–673.

    Google Scholar 

  • Fuentes-Pardo B., Inclán-Rubio V. (1981). Correlation between motor and electroretinographic circadian rhythm in the crayfish Procambarus bouvieri (Ortmann). Com. Biochem. Physiol. 68A:477–485.

    Article  Google Scholar 

  • Fuentes-Pardo B., Moreno-Sáenz E. (1988). Action of deuterium oxide upon the ERG circadian rhythm in crayfish Procambarus bouvieri. Comp. Biochem. Physiol. 90A(3):435–440.

    Article  CAS  Google Scholar 

  • Fuentes-Pardo B., Ramos-Carvajal J. (1982). The phase response curve of electroretinographic circadian rhythm of crayfish. Comp. Biochem. Physiol. 74A (3):711–714.

    Google Scholar 

  • Fuentes-Pardo B., Fanjul-Moles M., Moreno-Sáenz E. (1992). Synchronization by light of the ERG circadian rhythm during ontogeny in the crayfish. J. Interdiscip. Cycle Res. 23:81–91.

    Google Scholar 

  • Fuentes-Pardo B., Lara-Aparicio M., López de Medrano S. (1995). Perturbation of a circadian rhythm by single and periodic signals and its mathematical simulation. Bull. Math. Biol. 57(2):175–189.

    Article  Google Scholar 

  • Fuentes-Pardo B., Solórzano-García S., De la O Martínez A. (1997). Effects of complete and skeleton photoperiods on the circadian rhythm of the electroretinogram of the crayfish. Biol. Rhythm Res. 28:69–84.

    Article  Google Scholar 

  • Fuentes-Pardo B., Lara-Aparicio M., López de Medrano S. (2001). On the ontogeny of the motor circadian rhythm in crayfish. Bull. Math. Biol. 63(2):353–369.

    Article  PubMed  CAS  Google Scholar 

  • Garfias A., Rodríguez-Sosa L., Aréchiga H. (1995). Modulation of crayfisf retinal function by red pigment concentrating hormone. J. Exp. Biol. 198:1447–1454.

    PubMed  CAS  Google Scholar 

  • Goldbetter A. (1991). A minimal cascade model for the mitotic oscillator involving cycline and cdc2 kinase. Proc. Natl. Acad. Sci. USA 88:9107–9111.

    Article  Google Scholar 

  • Kalmus H., Wigglesworth L. A. (1960). Shock excited systems as models for biological rhythms. Biological clocks. Cold Spring Harbor Symp. Quant. Biol. 25:211–216.

    CAS  Google Scholar 

  • Lara-Aparicio M., López de Medrano S., Fuentes-Pardo B., Moreno-Sáenz E. (1993). A qualitative mathematical model of a circadian rhythm in crayfish. Bull. Math. Biol. 55(1):97–110.

    Article  Google Scholar 

  • Lara-Aparicio M., Barriga-Montoya C., Fuentes-Pardo B. (2006). A brief biomathematical history of circadian rhythms: from Wigglesworth to Winfree. Scientiae Mathematicae Japanicae 64(2):357–370.

    Google Scholar 

  • Lloyd D. and Kippert F. (1993). Intracellular coordination by the internal clock. Cell Biol. Int. 17(12):1047–1052.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D. and Murray D. B. (2005). Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem. Sci. 30(7):373–377.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D., Eshantha L., Salgado J., Turner M. P., Murray D. B. (2002). Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett. 519:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Sáenz E., Hernández-Falcón J., Fuentes-Pardo B. (1986). Role of the sinus gland in crayfish circadian rhythmicity-II. ERG circadian rhythm. Comp. Biochem. Physiol. Part A 87A(1):119–125.

    Google Scholar 

  • Moreno-Sáenz E., Fuentes-Pardo B., Hernández-Falcón J. (1992). Photoentrainment of the circadian rhythmin the electroretinogram of the crayfish and its dependence on the sinus gland. J. Exp. Zool. 264:144–152.

    Article  Google Scholar 

  • Paetkau V., Edwards R., Illner R. (2006). A model for generating circadian rhythm by coupling ultradian oscillators. Theor. Biol. Med. Model. 3(12):1–10.

    Google Scholar 

  • Pavlidis T. (1969). Populations of interacting oscillators and circadian rhythms. J. Theor. Biol. 22:418–436.

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis T. (1973). Biological oscillators: their mathematical analysis. Academic, New York.

    Google Scholar 

  • Pittendrigh C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25:159–184.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1974). Circadian organization in cells and the circadian organization of the multicellular system. Neurosciences Third Study Program. (eds Schmitt S. O. and Worden F. G.). MIT, Cambridge.

    Google Scholar 

  • Porras M. G., López-Colomé A. M., Aréchiga H. (2001). Red pigment-concentrating hormone induces a calcium-mediated retraction of distal retinal pigments in the crayfish. J. Comp. Physiol. 187:349–357.

    Article  CAS  Google Scholar 

  • Sánchez J. A., Fuentes-Pardo B. (1976). Circadian rhythm in the amplitude of the electroretinogram in the isolated eyestalk of the crayfish. Comp. Biochem. Physiol. 56A:601–605.

    Google Scholar 

  • Veldhuis J. D. (1992). A parsimonious model of amplitude and frequency modulation of episodic of hormone secretory bursts of a mechanism for ultradian signaling for endocrine glands. In: Ultradian rhythms in life processes (eds Lloyd D. and Rossi E. L.) Springer, London, pp. 139–172.

    Google Scholar 

  • Verde M. A., Barriga-Montoya C., Fuentes-Pardo B. (2007). Pigment dispersing hormone generates a circadian response to light in the crayfish, Procambarus clarkii. Comp. Biochem. Physiol. Part A 147:983–992.

    Article  CAS  Google Scholar 

  • Welsh J. H. (1941). The sinus gland and 24-hours cycle of retinal pigment migration in the crayfish. J. Exp. Zool. 186:35–49.

    Article  Google Scholar 

  • Winfree A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42.

    Article  PubMed  CAS  Google Scholar 

  • Winfree A. T. (1979). 24 hard problems about 24-hour rhythms. Nonlinear oscillations in biology. American mathematical Society. Lectures in Applied Mathematics (ed Hoppensteadt F. C.), Vol. 17, pp. 93–126.

    Google Scholar 

  • Winfree A. T. (1980). The geometry of biological time, xiii, Springer, New York, 530 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Fuentes-Pardo, B., Barriga-Montoya, C., Lara-Aparicio, M., de Medrano, S.L. (2008). Ultradian and Circadian Rhythms: Experiments and Models. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_6

Download citation

Publish with us

Policies and ethics