Skip to main content

Phosphorylation Dynamics in Mammalian Cells

  • Chapter
Ultradian Rhythms from Molecules to Mind

Abstract

Living cells are auto-dynamic because of control systems operating in their periodic mode. They comprise diverse regulatory networks and are thus multi-oscillators covering a wide range of characteristics. Phosphorylation reactions are involved in virtually all aspects of cell function. Here, we outline a range of our studies on ATP and protein phosphorylation in order to highlight certain features of ultradian dynamics not widely recognised nor appreciated. Our work in this field alone supports the multi-oscillator concept of the living cell and confirms its complexities not least with regard to the significance of temporal oganisation of dynamic processes. The findings support the view that the regulation of cell function, properties and behaviour is achieved through modulation of the dynamic characteristics and are consistent with our concepts of differentiation and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bar-Or, R.L., Maya, R., Segel, L.A., Alon, U., Levine, A.J., and Oren, M. (2000). Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci USA 97, 11250–11255.

    Article  Google Scholar 

  • Bhoola, R., and Hammond, K. (2000). Modulation of the rhythmic patterns of expression of phosphoprotein phosphatases in human leukaemia cells. Cell Biol Int 24, 539–547.

    Article  PubMed  Google Scholar 

  • Bodalina, U., Hammond, K., and Gilbert, D. (2005). Temporal changes in the expression of protein phosphatase 1 and protein phosphatase 2A in proliferating and differentiating murine erythroleukaemia cells. Cell Biol Int 29, 287–299.

    Article  PubMed  Google Scholar 

  • Bodalina, U., Hammond, K., and Gilbert, D. (2007). Temporal variation in the expression of the p53 protein in proliferating and differentiating murine erythroleukaemia cells. Mol Cell Biochem 294, 155–162.

    Article  PubMed  Google Scholar 

  • Breitman, T., Selonik, S., and Collins, S. (1980). Induction of differentiation of the human promyelocytic leukaemia cell line (HL60) by retinoic acid. Proc Natl Acad Sci USA 77, 2936–2940.

    Article  PubMed  Google Scholar 

  • Brodsky, V., Bolkov, P., Nechaeva, N., Yurovtsky, Y., Novikova, T., Fateva, V., and Schevchenco, N. (1992). The rhythm of protein synthesis does not depend on an oscillation of ATP level. J Cell Sci 103, 363–370.

    PubMed  Google Scholar 

  • Buchner, K. (2000). The role of protein kinase C in the regulation of cell growth and in signaling to the cell nucleus. J Cancer Res Clin Oncol 126, 1–11.

    Article  PubMed  Google Scholar 

  • Calvert-Evers, J., and Hammond, K. (2000a). The influence of buffer composition on the expression and activity of protein tyrosine phosphatase. Electrophoresis 21, 2944–2946.

    Article  PubMed  Google Scholar 

  • Calvert-Evers, J., and Hammond, K. (2000b). Temporal variations in protein tyrosine phosphatase activity during cell proliferation and differentiation. Cell Biol Int 24, 559–567.

    Article  PubMed  Google Scholar 

  • Calvert-Evers, J., and Hammond, K. (2002). Modification of oscillatory behaviour of protein tyrosine kinase and phosphatase during all-trans retinoic acid-induced differentiation of leukaemic cells. Cell Biol Int 26, 1035–1042.

    Article  PubMed  Google Scholar 

  • Calvert-Evers, J., and Hammond, K. (2003). Temporal variations in protein tyrosine kinase activity in leukaemic cells: response to all-trans retinoic acid. Mol Cell Biochem 245, 23–30.

    Article  PubMed  Google Scholar 

  • Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J., and Der, C.J. (1998). Increasing complexity of Ras signaling. Oncogene 17, 1395–1493.

    Article  PubMed  Google Scholar 

  • Chen, C.Y., Liou, J., Forman, L.W., and Faller, D.V. (1998). Differential regulation of discrete apoptotic pathways by Ras. J Biol Chem 273, 16700–16709.

    Article  PubMed  Google Scholar 

  • Cohen, P. (2002). Protein phosphatases 1–targeted in many directions. J Cell Sci 115, 241–256.

    PubMed  Google Scholar 

  • Cooper, J., Reiss, N., Schwartz, R., and Hunter, T. (1983). Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 302, 218–223.

    Article  PubMed  Google Scholar 

  • Cooper, J., Esch, F., Taylor, S., and Hunter, T. (1984). Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinase in vivo and in vitro. J Biol Chem 259, 7835–7841.

    PubMed  Google Scholar 

  • Dekker, L.V., Palmer, R.H., and Parker, P.J. (1995). The protein kinase C and protein kinase C related gene families. Curr Opin Struct Biol 5, 396–402.

    Article  PubMed  Google Scholar 

  • Downward, J. (1990). The ras superfamily of small GTP-binding proteins. TIBS 15, 469–472.

    PubMed  Google Scholar 

  • Edmunds, L.N., Jr. (1988). Cellular and molecular bases of biological clocks. New York: Springer.

    Google Scholar 

  • Ferreira, G., Hammond, K., and Gilbert, D. (1994a). Insulin stimulation of high frequency phosphorylation dynamics in murine erythroleukaemia cells. BioSystems 33, 31–43.

    Article  PubMed  Google Scholar 

  • Ferreira, G., Hammond, K., and Gilbert, D. (1994b). Oscillatory variations in the amount of protein extractable from murine erythroleukaemia cells: stimulation by insulin. BioSystems 32, 183–190.

    Article  PubMed  Google Scholar 

  • Ferreira, G., Hammond, K., and Gilbert, D. (1996a). Distinct, very high frequency oscillations in the activity and amount of active isozyme of lactate dehydrogenase in murine erythroleukaemic cells and a cell-free system. Cell Biol Int 20, 625–633.

    Article  PubMed  Google Scholar 

  • Ferreira, G., Hammond, K., and Gilbert, D. (1996b). Independent, high frequency oscillations in the amounts of individual isozymes of lactate dehydrogenase in HL60 cells. Cell Biol Int 20, 607–611.

    Article  PubMed  Google Scholar 

  • Ferreira, G., Wolfle, H., Hammond, K., and Gilbert, D. (1996c). High-frequency oscillations in the activity of phosphotyrosine phosphatase in murine erythroleukaemic cells: action of insulin and hexamethylene bisacetamide. Cell Biol Int 20, 599–605.

    Article  PubMed  Google Scholar 

  • Frangioni, J.V., Oda, A., Smith, M., Salsam, E.W., and Neel, B.G. (1993). Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine 1B (PTP-1B) in human platelets. EMBO J 12, 4843–4856.

    PubMed  Google Scholar 

  • Ge, Y., Li, Z.H., Marshall, M.S., Bronmeyer, H.E., and Lu, I. (1998). Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 + + + cells. Blood Cells Mol Dis 24, 124–136.

    Article  PubMed  Google Scholar 

  • Gilbert, D., Visser, G., Ferreira, G., and Hammond, K. (2000). Transient chaos in intracellular dynamics. Cell Biol Int 24, 589–591.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A. (1968). Differentiation, oncogenesis and cellular periodicities. J Theor Biol 21, 113–122.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A. (1969). Phase plane analysis of periodic isozyme pattern changes in cultured cells. Biochem Biophys Res Commun 37, 860–866.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A. (1974a). The nature of the cell cycle and the control of cell proliferation. BioSystems 5, 197–206.

    Article  Google Scholar 

  • Gilbert, D.A. (1974b). The temporal response of the cell to disturbances and its possible relationship to differentiation and cancer. S Afr J Sci 70, 234–244.

    Google Scholar 

  • Gilbert, D.A. (1984). Temporal organisation, re-organisation and disorganisation in cells. In: Cell cycle clocks, ed. L.N. Jr. Edmunds. New York: Marcel Dekker, 5–25.

    Google Scholar 

  • Gilbert, D.A. (1995). Ageing, oscillations and efficiency. BioSystems 36, 1–5.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A., and Ferreira, G. (2000). Problems associated with the study of cellular oscillations. Cell Biol Int 24, 501–514.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A., and Lloyd, D. (2000). The living cell: a complex autodynamic multioscillator system? Cell Biol Int 24, 569–580.

    Article  PubMed  Google Scholar 

  • Gilbert, D.A., and Tsilimigras, C.W.A. (1981). Cellular oscillations: relative independence of enzyme activity rhythms and periodic variations in the amount of extractable protein. S Afr J Sci 77, 66–72.

    Google Scholar 

  • Gilbert, D.A., and Visser, G. (1993). Insulin stimulation of morphological dynamics: nonspecific biophysical mechanisms for the generalized stimulation of metabolism. BioSystems 29, 143–149.

    Article  PubMed  Google Scholar 

  • Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855–4878.

    PubMed  Google Scholar 

  • Hammond, K., Bhoola, R., Bodalina, U., and Gilbert, D. (1998). Dynamic cells: temporal organisation and control of phosphorylation. Trends Comp Biochem Physiol 4, 75–88.

    Google Scholar 

  • Hammond, K., Savage, N., and Littlewood, M. (2000a). Protein kinase C in erythroleukaemia cells: temporal variations in the expression of the alpha, epsilon and zeta isoforms. Cell Biol Int 24, 549–557.

    Article  PubMed  Google Scholar 

  • Hammond, K., Savage, N., and Littlewood, M. (2000b). Rhythmic patterns in the expression of the ras oncogene in proliferating and differentiating erythroleukaemia cells. Cell Biol Int 24, 529–537.

    Article  PubMed  Google Scholar 

  • Harris, S.L., and Levine, A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908.

    Article  PubMed  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. (1991). p53 mutations in human cancers. Science 253, 49–53.

    Article  PubMed  Google Scholar 

  • Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. J Biochem 353, 417–439.

    Article  Google Scholar 

  • Kirschner, M. (1992). The cell cycle then and now. TIBS 17, 281–285.

    PubMed  Google Scholar 

  • Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., Finkenzeller, G., Marme, D., and Rapp, U.R. (1993). Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364, 249–252.

    Article  PubMed  Google Scholar 

  • Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., and Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36, 147–150.

    Article  PubMed  Google Scholar 

  • Lane, D.P. (1992). Cancer. p53 guardian of the genome. Nature 358, 15–16.

    Article  PubMed  Google Scholar 

  • Leng, L., Yu, F., Dong, L., Busquets, X., Osada, S., Richon, V.M., Marks, P.A., and Rifkind, R.A. (1993). Differential modulation of protein kinase C isoforms in erythroleukaemia during induced differentiation. Cancer Res 53, 5554–5558.

    PubMed  Google Scholar 

  • MacKinnon, H., and Gilbert, D.A. (1992). To divide or not to divide. That is the question. Fundam Med Cell Biol 7, 1–14.

    Google Scholar 

  • Mallia, C.M., Aguirre, V., Mcgary, E., Tang, Y., Scandurro, A.B., Liu, C., Noguchi, C.T., and Beckman, B. (2000). Protein kinase C alpha is an effector of hexamethylene bisacetamide-induced differentiation of Friend erythroleukaemia cells. Exp Cell Res 246, 348–354.

    Article  Google Scholar 

  • Malumbres, M., and Pellicer, A. (1998). RAS pathways to cell cycle control and cell transformation. Front Biosci 3, 887–912.

    Google Scholar 

  • Matsumura, I., Nakajima, K., Wakao, H., Hattori, S., Hashimoto, K., Sugahara, H., Kato, T., Miyazaki, H., Hirano, T., and Kanakura, Y. (1998). Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation of a human factor-dependent hematopoietic cell line. Mol Cell Biol 18, 4282–4290.

    PubMed  Google Scholar 

  • Melloni, E., Pontremoli, S., Viotti, P.L., Marks, P.A., and Rifkind, R.A. (1989). Differential expression of protein kinase C isoforms and erythroleukaemia cell differentiation. J Biol Chem 264, 18414–18418.

    PubMed  Google Scholar 

  • Melloni, E., Pontremoli, S., Sparatore, B., Patrone, M., Grossi, F., Marks, P.A., and Rifkind, R.A. (1990). Introduction of the beta-isozyme of protein kinase C accelerates induced differentiation of murine erythroleukaemia cells. Proc Natl Acad Sci USA 87, 4417–4420.

    Article  PubMed  Google Scholar 

  • Monk, N.A. (2003). Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr Biol 13, 1409–1413.

    Article  PubMed  Google Scholar 

  • Morita, K., Nishikawa, M., Kobayashi, K., Deguchi, K., Ito, M., Nakano, T., Shimah, H., Nagao, M., Kuno, T., Tanaka, C., and Shirakawa, S. (1992). Augmentation of retinoic acid-induced granulocytic differentiation in HL60 leukaemia cells by serine/threonine protein phosphatase inhibitors. FEBS Lett 314, 340–344.

    Article  PubMed  Google Scholar 

  • Mumby, M.C., and Walter, G. (1993). Protein serine/threonine phosphatases: structure, regulation and functions in cell growth. Physiol Rev 73, 673–699.

    PubMed  Google Scholar 

  • Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  PubMed  Google Scholar 

  • Norbury, C., and Nurse, P. (1992). Animal cell cycles and their control. Ann Rev Biochem 61, 441–470.

    Article  PubMed  Google Scholar 

  • Patrone, M., Pessino, A., Passalaqua, M., Sparatore, B., Melloni, E., and Pontremoli, S. (1994). Protein kinase C isoforms in murine erythroleukaemia cells and their involvement in the differentiation process. FEBS Lett 344, 91–95.

    Article  PubMed  Google Scholar 

  • Pessino, A., Sparatore, B., Patrone, M., Passalaqua, M., Melloni, E., and Pontremoli, S. (1994). Differential expression of protein kinase C isoform genes in three murine erythroleukaemia cell variants: implication for chemical induced differentiation. Biochem Biophys Res Comm 204, 461–467.

    Article  PubMed  Google Scholar 

  • Reuben, R., Rifkind, R., and Marks, P. (1980). Chemically-induced murine erythroleukaemic differentiation. Biochim Biophys Acta 605, 325–346.

    PubMed  Google Scholar 

  • Rosson, B., and O’Brien, T.G. (1995). Expression and modulation of protein kinase C isoforms in differentiation-competent and differentiation-resistant erythroleukaemic cells. Biochem Biophys Res Commun 210, 90–97.

    Article  PubMed  Google Scholar 

  • Rovera, G., Santoli, D., and Damsky, C. (1979). Human promyelocytic leukaemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 76, 2779–2783.

    Article  PubMed  Google Scholar 

  • Rozengurt, E., Rodriguez-Pena, M., and Smith, K. (1983). Phorbol esters, phospholipase C and growth factors rapidly stimulate the phosphorylation of a M r 80, 000 protein in intact, quiescent 3T3 cells. Proc Natl Acad Sci USA 80, 7244–7248.

    Article  PubMed  Google Scholar 

  • Scheele, J.S., Pilz, R.B., Quilliam, L.A., and Boss, G.R. (1994). Identification of a ras-related protein in murine erythroleukemia cells that is a cyclic AMP-dependent protein kinase substrate and is phosphorylated during chemically induced differentiation. J Biol Chem 269, 18599–18606.

    PubMed  Google Scholar 

  • Schievella, A.R., Paige, L.A., Johnson, K.A., Hill, D.E., and Erikson, R.L. (1993). Protein tyrosine phosphatase 1B undergoes mitosis specific phosphorylation on serine. Cell Growth Differ 4, 239–246.

    PubMed  Google Scholar 

  • Segel, L.A. (1980). Dimensional analysis. In: Mathematical models in molecular and cellular biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shi, L., Potts, M., and Kennelly, P.J. (1998). The serine, threonine and/or tyrosine-specific protein kinases and protein phosphatases of eukaryotic organisms: a family portrait. FEMS Microbiol Rev 22, 229–253.

    Article  PubMed  Google Scholar 

  • Sim, A., and Ludowyke, R.I. (2002). The complex nature of protein phosphatases. IUBMB Life 53, 283–286.

    Article  PubMed  Google Scholar 

  • Sprott, S.C., Hammond, K., and Savage, N. (1987). Electrophoretic forms of protein kinases during differentiation of murine erythroleukaemic cells. Anticancer Res 7, 521–525.

    PubMed  Google Scholar 

  • Sprott, S.C., Hammond, K., and Savage, N. (1991a). Protein kinases associated with proliferation and differentiation in murine erythroleukaemic cells. Int J Biochem 23, 713–718.

    Article  PubMed  Google Scholar 

  • Sprott, S.C., Hammond, K., and Savage, N. (1991b). Subcellular fractionation of murine erythroleukaemic cells: distribution of protein kinases. Anal Biochem 194, 407–412.

    Article  PubMed  Google Scholar 

  • Tawara, I., Nishikawa, M., Morita, K., Kobayashi, K., Toyoda, H., Omay, S.B., Shima, H., Nagao, M., Kuno, T., Tanaka, C., and Shirakawa, S. (1993). Down-regulation by retinoic acid of the catalytic subunit of protein phosphatase type 2A. FEBS Lett 321, 224–228.

    Article  PubMed  Google Scholar 

  • Toker, A. (1998). Signaling through protein kinase C. Front Biosci 3, 1134–1147.

    Google Scholar 

  • Tung, H.Y., Resnick, T.J., Hemmings, B.A., Shenolikar, S., and Cohen, P. (1984). The catalytic subunits of protein phosphatase-1 and protein phosphatase-2A are distinct gene products. Eur J Biochem 138, 635–641.

    Article  PubMed  Google Scholar 

  • Tung, H.Y., Alemany, S., and Cohen, P. (1985). The protein phosphatases involved in cellular regulation. 2. Purification, subunit structure and properties of protein phosphatases-2A0, 2A1, and 2A2 from rabbit skeletal muscle. Eur J Biochem 148, 253–263.

    Article  PubMed  Google Scholar 

  • Tyson, J.J. (2004). Monitoring p53’s pulse. Nat Genet 36, 113–114.

    Article  PubMed  Google Scholar 

  • Van Dijk, M.C., Hilkmann, H., and Van Blitterswijk, W.J. (1997). Platelet-derived growth factor activation of mitogen-activated protein kinase depends on the sequential activation of phosphatidylcholine-specific phospholipase C, protein kinase C zeta and Raf-1. Biochem J 325, 303–307.

    PubMed  Google Scholar 

  • Virshup, D.M. (2000). Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12, 180–185.

    Article  PubMed  Google Scholar 

  • Visser, G., Reinten, C., Coplan, P., Gilbert, D., and Hammond, K. (1990). Oscillations in cell morphology and redox state. Biophys Chem 37, 383–394.

    Article  PubMed  Google Scholar 

  • Vousden, K.H. (2002). Activation of the p53 tumour suppressor protein. Biochim Biophys Acta 1602, 47–59.

    PubMed  Google Scholar 

  • Young, S.W., Dickens, M., and Tavare, J.M. (1996). Activation of mitogen-activated protein kinase by protein kinase C isotypes alpha, beta I and gamma, but not epsilon. FEBS Lett 384, 181–184.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Gilbert, D.A., Hammond, K.D. (2008). Phosphorylation Dynamics in Mammalian Cells. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_4

Download citation

Publish with us

Policies and ethics