Skip to main content

Abstract

This Chapter considers the continuing debate regarding the mechanisms that underlie the cognitive role of sleep. One theory proposes that the triggering of generalized synaptic downscaling occurs so as to restore homeostatic balance and enable further waking potentiation. The alternative, favored by the present authors, proposes that sleep harbors decreased and increased plasticity in separate circuits. Further work is required to resolve this debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274.

    PubMed  CAS  Google Scholar 

  • Barrett D (2001) The Committee of Sleep: How Artists, Scientists, and Athletes Use Dreams for Creative Problem-Solving, 1st ed. Edition. New York: Crown Publishers.

    Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    PubMed  CAS  Google Scholar 

  • Born J, Wagner U (2004a) Memory consolidation during sleep: role of cortisol feedback. Ann NY Acad Sci 1032:198–201.

    PubMed  CAS  Google Scholar 

  • Born J, Wagner U (2004b) Awareness in memory: being explicit about the role of sleep. Trends Cogn Sci 8:242–244.

    PubMed  Google Scholar 

  • Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12:410–424.

    PubMed  Google Scholar 

  • Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 358:805–814.

    PubMed  CAS  Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15) O PET study. Brain 120:1173–1197.

    PubMed  Google Scholar 

  • Bryson D, Schacher S (1969) Behavioral analysis of mammalian sleep and learning. Perspect Biol Med 13:71–79.

    PubMed  CAS  Google Scholar 

  • Bushey D, Huber R, Tononi G, Cirelli C (2007) Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 27:5384–5393.

    PubMed  CAS  Google Scholar 

  • Cantero JL, Atienza M, Madsen JR, Stickgold R (2004) Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. Neuroimage 22:1271–1280.

    PubMed  Google Scholar 

  • Cawte J (1984) The ‘ordinary’ dreams of the Yolngu in Arnhem Land. Aust N Z J Psychiatr 18:236–243.

    CAS  Google Scholar 

  • Christy B, Nathans D (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci USA 86:8737–8741.

    PubMed  CAS  Google Scholar 

  • Cirelli C (2006) Sleep disruption, oxidative stress, and aging: new insights from fruit flies. Proc Natl Acad Sci USA 103:13901–13902.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (1998) Differences in gene expression between sleep and waking as revealed by mRNA differential display. Brain Res Mol Brain Res 56:293–305.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (1999a) Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology. J Sleep Res 8 Suppl 1:44–52.

    PubMed  Google Scholar 

  • Cirelli C, Tononi G (1999b) Differences in gene expression during sleep and wakefulness. Ann Med 31:117–124.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (2000a) Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (2000b) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20:9187–9194.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43.

    PubMed  CAS  Google Scholar 

  • Cirelli C, LaVaute TM, Tononi G (2005a) Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem 94:1411–1419.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98:1632–1645.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G (2005b) Reduced sleep in Drosophila Shaker mutants. Nature 434:1087–1092.

    PubMed  CAS  Google Scholar 

  • Crick F, Mitchison G (1983) The function of dream sleep. Nature 304:111–114.

    PubMed  CAS  Google Scholar 

  • Crick F, Mitchison G (1995) REM sleep and neural nets. Behav Brain Res 69:147–155.

    PubMed  CAS  Google Scholar 

  • Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290:812–816.

    PubMed  CAS  Google Scholar 

  • Dement W, Kleitman N (1957a) Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroenceph Clin Neurophysiol Suppl 9:673–690.

    CAS  Google Scholar 

  • Dement WC (1958) The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroenceph Clin Neurophysiol 10:291–296.

    PubMed  CAS  Google Scholar 

  • Dement WC, Kleitman N (1957b) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol 53:339–346.

    PubMed  CAS  Google Scholar 

  • Esposito K, Benitez A, Barza L, Mellman T (1999) Evaluation of dream content in combat-related PTSD. J Trauma Stress 12:681–687.

    PubMed  CAS  Google Scholar 

  • Fishbein W (1971) Disruptive effects of rapid eye movement sleep deprivation on long-term memory. Physiol Behav 6:279–282.

    PubMed  CAS  Google Scholar 

  • Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behav Biol 19:425–464.

    PubMed  CAS  Google Scholar 

  • Fishbein W, Schaumburg H, Weitzman ED (1966) Rapid eye movements during sleep in dark-reared kittens. J Nerv Ment Dis 143:281–283.

    PubMed  CAS  Google Scholar 

  • Fishbein W, McGaugh JL, Swarz JR (1971) Retrograde amnesia: electroconvulsive shock effects after termination of rapid eye movement sleep deprivation. Science 172:80–82.

    PubMed  CAS  Google Scholar 

  • Fishbein W, Kastaniotis C, Chattman D (1974) Paradoxical sleep: prolonged augmentation following learning. Brain Res 79:61–75.

    PubMed  CAS  Google Scholar 

  • Flanagan O (2000) Dreaming is not an adaptation. Behavioral & Brain Sciences 23:936–939.

    Google Scholar 

  • Fosse R, Stickgold R, Hobson JA (2001) The mind in REM sleep: reports of emotional experience. Sleep 24:947–955.

    PubMed  CAS  Google Scholar 

  • Fosse R, Stickgold R, Hobson JA (2004) Thinking and hallucinating: reciprocal changes in sleep. Psychophysiology 41:298–305.

    PubMed  Google Scholar 

  • Fosshage JL, Loew CA (1978) Dream Interpretation: A Comparative Study. New York: SP Medical & Scientific Books.

    Google Scholar 

  • Frankland PW, O’Brien C, Ohno M, Kirkwood A, Silva AJ (2001) Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411:309–313.

    PubMed  CAS  Google Scholar 

  • Freud S (1900) The Interpretation of Dreams, 1952 Edition. London: Encyclopaedia Britannica.

    Google Scholar 

  • Freud S (1915) The Unconscious, Republished in 1952 Edition. London: Encyclopaedia Britannica.

    Google Scholar 

  • Freud S (1920) Beyond the Pleasure Principle. New York: W. W. Norton.

    Google Scholar 

  • Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313:1775–1781.

    PubMed  CAS  Google Scholar 

  • Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja P, Nicolelis M (2004) Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci 24:11137–11147.

    PubMed  CAS  Google Scholar 

  • Giuditta A, ed (1985) A Sequential Hypothesis for the Function of Sleep. Stuttgart: Fisher-Verlag.

    Google Scholar 

  • Grastyan E, Karmos G (1961) A study of a possible “dreaming” mechanism in the cat. Acta Physiol Acad Sci Hung 20:41–50.

    PubMed  CAS  Google Scholar 

  • Gutwein BM, Shiromani PJ, Fishbein W (1980) Paradoxical sleep and memory: long-term disruptive effects of Anisomycin. Pharmacol Biochem Behav 12:377–384.

    PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001.

    PubMed  CAS  Google Scholar 

  • Hartmann E (1967) The Biology of Dreaming. Springfield, IL: Charles Thomas.

    Google Scholar 

  • Hartmann E (1998) Dreams and Nightmares: The New Theory on the origin and Meaning of Dreams. New York: Plenum.

    Google Scholar 

  • Hennevin E, Leconte P (1977) [Study of the relations between paradoxical sleep and learning processes (author’s transl)]. [French]. Physiol Behav 18:307–319.

    PubMed  CAS  Google Scholar 

  • Hennevin E, Hars B, eds (1985) Post-learning Paradoxical Sleep: a Critical Period When New Memory Is Reactivated. New York: Plenum.

    Google Scholar 

  • Hennevin E, Hars B (1992) 2nd-order conditioning during sleep. Psychobiology 20:166–176.

    Google Scholar 

  • Hennevin E, Hars B, Bloch V (1989) Improvement of learning by mesencephalic reticular stimulation during postlearning paradoxical sleep. Behav Neural Biol 51:291–306.

    PubMed  CAS  Google Scholar 

  • Hennevin E, Hars B, Maho C (1995a) Memory processing in paradoxical sleep. Sleep Res Soc Bull 1:44–50.

    Google Scholar 

  • Hennevin E, Maho C, Hars B, Dutrieux G (1993) Learning-induced plasticity in the medial geniculate nucleus is expressed during paradoxical sleep. Behav Neurosci 107:1018–1030.

    PubMed  CAS  Google Scholar 

  • Hennevin E, Hars B, Maho C, Bloch V (1995b) Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69:125–135.

    PubMed  CAS  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:269–279.

    PubMed  CAS  Google Scholar 

  • Hirase H, Leinekugel X, Czurko A, Csicsvari J, Buzsaki G (2001) Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Natl Acad Sci USA 98:9386–9390.

    PubMed  CAS  Google Scholar 

  • Hoffman KL, McNaughton B (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073.

    PubMed  CAS  Google Scholar 

  • Horstmanshoff HF (2004) Asclepius and temple medicine in aelius Aristides’ Sacred Tales. Stud Anc Med 27:325–341.

    PubMed  CAS  Google Scholar 

  • Huber R, Hill SL, Holladay C, Biesiadecki M, Tononi G, Cirelli C (2004) Sleep homeostasis in Drosophila melanogaster. Sleep 27:628–639.

    PubMed  Google Scholar 

  • Jenkins JB, Dallenbach KM (1924) Oblivescence during sleep and waking. Am J of Psychology 35:605–612.

    Google Scholar 

  • Jouvet M (1967) The states of sleep. Sci Am 216:62–68.

    PubMed  CAS  Google Scholar 

  • Jouvet M (1994) Paradoxical sleep mechanisms. Sleep 17:S77–S83.

    PubMed  CAS  Google Scholar 

  • Jouvet M, Delorme F (1965) Locus coeruleus et sommeil paradoxal. CR Soc Biol (Paris) 159:895–899.

    Google Scholar 

  • Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. CR Soc Biol (Paris) 153:1024–1028.

    CAS  Google Scholar 

  • Jung CG (1953a) General Aspects of Dream Psychology. In: Collected Works, pp 237–280. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jung CG (1953b) On the nature of Dreams. In, pp 281–297. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jung CG (1974) Dreams, 1st Edition. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jung CG, Von Franz ML, Henderson J (1969) Man and His Symbols. New York: Doubleday.

    Google Scholar 

  • Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, Reber PJ, Kounios J (2004) Neural activity when people solve verbal problems with insight. PLoS Biol 2:500–510.

    CAS  Google Scholar 

  • Kales A, Hoedemaker FS, Jacobson A, Kales JD, Paulson MJ, Wilson TE (1967) Mentation during sleep: REM and NREM recall reports. Percept Mot Skills 24:555–560.

    PubMed  CAS  Google Scholar 

  • Karni A, Tanne D, Rubenstein BS, Askenasy JJ, Sagi D (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265:679–682.

    PubMed  CAS  Google Scholar 

  • Kilton S (1951) Dream theory in Malaya. Complex 6:21–33.

    Google Scholar 

  • Kleitman N (1963) Sleep and Wakefulness. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Kohler W (1947) Gestalt Psychology: An Introduction to New Concepts in Modern Psychology, Reissue Edition. New York: Liveright.

    Google Scholar 

  • Kuhn TS (1962) The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Leconte P, Bloch V (1970) Déficit de la rétention d’un conditionnement après privation de sommeil paradoxal chez le rat. Comptes Rendus de l’Académie des Sciences (Paris) 271D:226–229.

    Google Scholar 

  • Leconte P, Hennevin E (1971) Augmentation de la durée de sommeil paradoxal consécutive à un apprentissage chez le rat. C R Acad Sci (Paris) 273:86–88.

    CAS  Google Scholar 

  • Leconte P, Hennevin E (1973) [Temporal characteristics of the augmentation of paradoxal sleep following learning in the rat]. [French]. Physiol Behav 11:677–686.

    PubMed  CAS  Google Scholar 

  • Leconte P, Hennevin E, Bloch V (1973) Analyse des effets d’un apprentissage et de son niveau d’acquisition sur le sommeil paradoxal consécutif. Brain Res 49:367–379.

    PubMed  CAS  Google Scholar 

  • Leconte P, Hennevin E, Bloch V (1974) Duration of paradoxical sleep necessary for the acquisition of conditioned avoidance in the rat. Physiol Behav 13:675–681.

    PubMed  CAS  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194.

    PubMed  CAS  Google Scholar 

  • Lee MG, Jones BE (2004) Role of basalo-cortical system in modulating cortical activity and sleep-wake states. In: Sleep: Circuits & Functions (Luppi P-H, ed). New York: CRC.

    Google Scholar 

  • Lincoln JS (2003) The Dream in Native American and Other Primitive Cultures. New York: Dover Publications.

    Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190.

    PubMed  CAS  Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.

    PubMed  CAS  Google Scholar 

  • Lucero MA (1970) Lengthening of REM sleep duration consecutive to learning in the rat. Brain Res 20:319–322.

    PubMed  CAS  Google Scholar 

  • Luppi P-H, Boissard R, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Léger L, Barbagli B, Fort P (2004) The network responsible for paradoxical sleep onset and maintenance: a new theory based on the head-restrained rat model. In: Sleep: Circuits & Functions (Luppi P-H, ed). New York: CRC.

    Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 145:433–434.

    Google Scholar 

  • Maquet P (1996) [Paradoxical human sleep]. Rev Med Liege 51:632.

    PubMed  CAS  Google Scholar 

  • Maquet P (2001) The role of sleep in learning and memory. Science 294:1048–1052.

    PubMed  CAS  Google Scholar 

  • Maquet P, Phillips C (1998) Functional brain imaging of human sleep. J Sleep Res 7:42–47.

    PubMed  Google Scholar 

  • Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383:163–166.

    PubMed  CAS  Google Scholar 

  • Maquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A, Franck G (1997) Functional neuroanatomy of human slow wave sleep. J Neurosci 17:2807–2812.

    PubMed  CAS  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, Del Fiore G, Degueldre C, Meulemans T, Luxen A, Franck G, Van Der Linden M, Smith C, Cleeremans A (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836.

    PubMed  CAS  Google Scholar 

  • McGaugh JL (2000) Memory–a century of consolidation. Science 287:248–251.

    PubMed  CAS  Google Scholar 

  • Mednick SC, Nakayama K, Stickgold R (2003) Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 6:697–698.

    PubMed  CAS  Google Scholar 

  • Mednick SC, Nakayama K, Cantero JL, Atienza M, Levin AA, Pathak N, Stickgold R (2002) The restorative effect of naps on perceptual deterioration. Nat Neurosci 5:677–681.

    PubMed  CAS  Google Scholar 

  • Meier CA (2003) Healing Dream and Ritual: Ancient Incubation and Modern Psychotherapy. Einsiedeln, Switzerland: Daimon Verlag.

    Google Scholar 

  • Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799.

    PubMed  CAS  Google Scholar 

  • Miller PC (1997) Dreams in Late Antiquity. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Muzur A, Pace-Schott EF, Hobson JA (2002) The prefrontal cortex in sleep. Trends Cogn Sci 6:475–481.

    PubMed  Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507.

    PubMed  CAS  Google Scholar 

  • Neylan TC, Marmar CR, Metzler TJ, Weiss DS, Zatzick DF, Delucchi KL, Wu RM, Schoenfeld FB (1998) Sleep disturbances in the Vietnam generation: findings from a nationally representative sample of male Vietnam veterans. Am J Psychiatr 155:929–933.

    PubMed  CAS  Google Scholar 

  • Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770:192–201.

    PubMed  CAS  Google Scholar 

  • O’Hara BF, Young KA, Watson FL, Heller HC, Kilduff TS (1993) Immediate early gene expression in brain during sleep deprivation: preliminary observations. Sleep 16:1–7.

    PubMed  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9:2907–2918.

    PubMed  CAS  Google Scholar 

  • Pearlman CA (1969) Effect of rapid eye movement (dreaming) sleep deprivation on retention of avoidance learning in rats. Report US Naval Submarine Medical Center 22:1–4.

    Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X, Phillips C, Aerts J, Del Fiore G, Degueldre C, Luxen A, Cleeremans A, Maquet P (2003) Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 20:125–134.

    PubMed  Google Scholar 

  • Peirce CS (1958) Collected Papers of Charles Sanders Peirce. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pereira A, Ribeiro S, Wiest M, Moore LC, Pantoja J, Lin SC, Nicolelis MA (2007) Processing of tactile information by the hippocampus. Proc Natl Acad Sci USA 104:18286–18291.

    PubMed  CAS  Google Scholar 

  • Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995) The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270:24361–24369.

    PubMed  CAS  Google Scholar 

  • Pompeiano M, Cirelli C, Tononi G (1994) Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGIF-A mRNA protein. J Sleep Res 3:80–96.

    PubMed  Google Scholar 

  • Popper K (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. London: Routledge.

    Google Scholar 

  • Qin YL, McNaughton BL, Skaggs WE, Barnes CA (1997) Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci 352:1525–1533.

    PubMed  CAS  Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Washington, DC: National Institutes of Health.

    Google Scholar 

  • Revonsuo A (2000) The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming. Behav Brain Sci 23:877–901.

    PubMed  CAS  Google Scholar 

  • Ribeiro S, Nicolelis MAL (2004) Reverberation, storage and postsynaptic propagation of memories during sleep. Learn Mem 11:686–696.

    PubMed  Google Scholar 

  • Ribeiro S, Nicolelis M (2006) The evolution of neural systems for sleep and dreaming. In: Evolution of Nervous Systems (Kaas J, ed), pp 451–464. New York: Elsevier.

    Google Scholar 

  • Ribeiro S, Goyal V, Mello CV, Pavlides C (1999) Brain gene expression during REM sleep depends on prior waking experience. Learn Mem 6:500–508.

    PubMed  CAS  Google Scholar 

  • Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C (2002) Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye- movement sleep. J Neurosci 22:10914–10923.

    PubMed  CAS  Google Scholar 

  • Ribeiro S, Gervasoni D, Soares ES, Zhou Y, Lin SC, Pantoja P, Lavine M, Nicolelis M (2004a) Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biology 2:126–137.

    Google Scholar 

  • Ribeiro S, Pereira A, Ross J, Gao Z, Lin S-C, Gervasoni D, Marriott P, Lavine M, Nicolelis MAL (2004b) REM sleep is a noisy mode of offline neuronal processing. In: 34th Meeting of the Society for Neuroscience, p 324.310. San Diego, CA: Society for Neuroscience.

    Google Scholar 

  • Ribeiro S, Xinwu S, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NAM, Nicolelis MAL (2007) Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Frontiers in Neuroscience 1:43–55.

    PubMed  Google Scholar 

  • Roffwarg HP, Dement WC, Muzio JN, Fisher C (1962) Dream imagery: relationship to rapid eye movements of sleep. Arch Gen Psychiatry 7:235–258.

    PubMed  CAS  Google Scholar 

  • Ross RJ, Ball WA, Dinges DF, Kribbs NB, Morrison AR, Silver SM, Mulvaney FD (1994) Rapid eye movement sleep disturbance in posttraumatic stress disorder. Biol Psychiatry 35:195–202.

    PubMed  CAS  Google Scholar 

  • Ross RJ, Ball WA, Sanford LD, Morrison AR, Dinges DF, Silver SM, Kribbs NB, Mulvaney FD, Gehrman PR, McGinnis DE (1999) Rapid eye movement sleep changes during the adaptation night in combat veterans with posttraumatic stress disorder. Biol Psychiatry 45:938–941.

    PubMed  CAS  Google Scholar 

  • Schreuder BJ, van Egmond M, Kleijn WC, Visser AT (1998) Daily reports of posttraumatic nightmares and anxiety dreams in Dutch war victims. J Anxiety Disord 12:511–524.

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263.

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837.

    PubMed  CAS  Google Scholar 

  • Shulman D, Stroumsa GG, Stroumsa GAG (1999) Dream Cultures: Explorations in the Comparative History of Dreaming. Oxford: Oxford University Press.

    Google Scholar 

  • Siegel JM (1990) Mechanisms of sleep control. J Clin Neurophysiol 7:49–65.

    Article  PubMed  CAS  Google Scholar 

  • Siegel JM (2001) The REM sleep-memory consolidation hypothesis. Science 294:1058–1063.

    PubMed  CAS  Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873.

    PubMed  CAS  Google Scholar 

  • Smith C (1995) Sleep states and memory processes. Behav Brain Res 69:137–145.

    PubMed  CAS  Google Scholar 

  • Smith C (1996) Sleep states, memory processes and synaptic plasticity. Behav Brain Res 78:49–56.

    PubMed  CAS  Google Scholar 

  • Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491–506.

    PubMed  Google Scholar 

  • Smith C, Butler S (1982) Paradoxical sleep at selective times following training is necessary for learning. Physiol Behav 29:469–473.

    PubMed  CAS  Google Scholar 

  • Smith C, Lapp L (1986) Prolonged increases in both PS and number of REMS following a shuttle avoidance task. Physiol Behav 36:1053–1057.

    PubMed  CAS  Google Scholar 

  • Smith C, Kelly G (1988) Paradoxical sleep deprivation applied two days after end of training retards learning. Physiol Behav 43:213–216.

    PubMed  CAS  Google Scholar 

  • Smith C, Wong PTP (1991) Paradoxical sleep increases predict successful learning in a complex operant task. Behav Neurosci 105:282–288.

    PubMed  CAS  Google Scholar 

  • Smith C, Lapp L (1991) Increases in number of REMS and REM density in humans following an intensive learning period. Sleep 14:325–330.

    PubMed  CAS  Google Scholar 

  • Smith C, MacNeill C (1993) A paradoxical sleep-dependent window for memory 53–56-H after the end of avoidance training. Psychobiology 21:109–112.

    Google Scholar 

  • Smith C, Young J, Young W (1980) Prolonged increases in paradoxical sleep during and after avoidance-task acquisition. Sleep 3:67–68.

    PubMed  CAS  Google Scholar 

  • Smith C, Kitahama K, Valatx JL, Jouvet M (1974) Increased paradoxical sleep in mice during acquisition of a shock avoidance task. Brain Res 77:221–230.

    PubMed  CAS  Google Scholar 

  • Solms M (1997) The Neuropsychology of Dreams. New York: Lawrence Erlbaum.

    Google Scholar 

  • Solms M (2000) Dreaming and REM sleep are controlled by different brain mechanisms. Behav Brain Sci 23:843–850.

    PubMed  CAS  Google Scholar 

  • Solms M (2004) Freud returns. Sci Am 290:82–88.

    PubMed  Google Scholar 

  • Steriade M (1992) Basic mechanisms of sleep generation. Neurology 42:9–18.

    PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685.

    PubMed  CAS  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751.

    PubMed  CAS  Google Scholar 

  • Stickgold R (1998) Sleep: off-line memory reprocessing. Trends Cogn Sci 2:484–492.

    Google Scholar 

  • Stickgold R (2001) Toward a cognitive neuroscience of sleep. Sleep Med Rev 5:417–421.

    PubMed  Google Scholar 

  • Stickgold R (2003) Memory, cognition, and dreams. In: Sleep and Brain Plasticity (P. Maquet CS, R. Stickgold, ed), pp 17–39. Oxford: Oxford University Press.

    Google Scholar 

  • Stickgold R, Walker MP (2005) Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci 28:408–415.

    PubMed  CAS  Google Scholar 

  • Stickgold R, James L, Hobson JA (2000a) Visual discrimination learning requires sleep after training. Nat Neurosci 3:1237–1238.

    PubMed  CAS  Google Scholar 

  • Stickgold R, Fosse R, Walker MP (2002) Linking brain and behavior in sleep-dependent learning and memory consolidation. Proc Natl Acad Sci USA 99:16519–16521.

    PubMed  CAS  Google Scholar 

  • Stickgold R, Scott L, Rittenhouse C, Hobson JA (1999) Sleep-induced changes in associative memory. J Cogn Neurosci 11:182–193.

    PubMed  CAS  Google Scholar 

  • Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory reprocessing. Science 294:1052–1057.

    PubMed  CAS  Google Scholar 

  • Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA (2000b) Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12:246–254.

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349.

    PubMed  CAS  Google Scholar 

  • Tanji J, Hoshi E (2001) Behavioral planning in the prefrontal cortex. Curr Opin Neurobiol 11:164–170.

    PubMed  CAS  Google Scholar 

  • Thiel G, Schoch S, Petersohn D (1994) Regulation of synapsin I gene expression by the zinc finger transcription factor zif268/egr-1. J Biol Chem 269:15294–15301.

    PubMed  CAS  Google Scholar 

  • Timo-Iaria C, Negrao N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T (1970) Phases and states of sleep in the rat. Physiol Behav 5:1057–1062.

    PubMed  CAS  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150.

    PubMed  Google Scholar 

  • Tononi G, Cirelli C, Pompeiano M (1995) Changes in gene expression during the sleep-waking cycle: a new view of activating systems. Arch Ital Biol 134:21–37.

    PubMed  CAS  Google Scholar 

  • Ulloor J, Datta S (2005) Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J Neurochem 95:418–428.

    PubMed  CAS  Google Scholar 

  • Vyazovskiy V, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208.

    PubMed  CAS  Google Scholar 

  • Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427:352–355.

    PubMed  CAS  Google Scholar 

  • Walker MP, Stickgold R (2004) Sleep-dependent learning and memory consolidation. Neuron 44:121–133.

    PubMed  CAS  Google Scholar 

  • Walker MP, Liston C, Hobson JA, Stickgold R (2002a) Cognitive flexibility across the sleep-wake cycle: REM-sleep enhancement of anagram problem solving. Brain Res Cogn Brain Res 14:317–324.

    PubMed  Google Scholar 

  • Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R (2002b) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35:205–211.

    PubMed  CAS  Google Scholar 

  • Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R (2003) Sleep and the time course of motor skill learning. Learn Mem 10:275–284.

    PubMed  Google Scholar 

  • Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, Bundman M, Kuhl D (2001) Arg3.1/Arc mRNA induction by Ca2 + and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 21:5484–5493.

    PubMed  CAS  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679.

    PubMed  CAS  Google Scholar 

  • Winson J (1985) Brain and Psyche. New York: Anchor.

    Google Scholar 

  • Winson J, Abzug C (1977) Gating of neuronal transmission in the hippocampus: efficacy of transmission varies with behavioral state. Science 196:1223–1225.

    PubMed  CAS  Google Scholar 

  • Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TV, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4:603–614.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ribeiro, S., Simões, C., Nicolelis, M. (2008). Genes, Sleep and Dreams. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_17

Download citation

Publish with us

Policies and ethics