Skip to main content

Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance

  • Chapter
Ultradian Rhythms from Molecules to Mind

Abstract

The present chapter reviews and summarizes some of the major findings of the studies of the impact of sleep deprivation on cognitive performance over the past half century. The studies discussed are limited to instances of total sleep loss and support the argument that total sleep loss may impact different cognitive functions differently. Some cognitive variables may be more sensitive to sleep loss than others and some cognitive variables may be more sensitive to the homeostatic pressures of accumulated wakefulness, while others may be more sensitive to the impact of the circadian cycle.

Three types of data were chosen for illustration: 1) those that are descriptive of the major effects of short- to-mid term (24-48 hrs) or long term (72 hrs and longer) sleep deprivation; 2) those that are descriptive of disassociations of the effects of sleep deprivation on cognitive performance; and 3) those that describe differential effects of treatments on different cognitive performance tasks. Evidence is presented to show that the effects of sleep deprivation on cognitive performance are not uniform, either with respect to task or with respect to the time since the last sleep epoch.

The propositions discussed in the present chapter have important theoretical and practical implications. If more than one neural mechanism is involved in performance decrement due to sleep deprivation and sleep restriction at any moment, then any proposed intervention that targets only one of the mechanisms cannot be fully successful in ameliorating the effects of sleep loss. Multiple sources of variance in causing performance decrement require multiple forms of treatment to eliminate or reduce decrement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerstedt, T. and Gillberg, M. (1981) The circadian variation of experimentally displaced sleep. Sleep, 4, 159–169.

    PubMed  Google Scholar 

  • Amendola, C.A., Gabrieli, J.D.E. and Lieberman, H.R. (1998) Caffeine’s effects on performance and mood are independent of age and gender. Nutritional Neuroscience, 1, 269–280.

    Google Scholar 

  • Amiez, C. and Petrides, M. (2007) Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Publication of the National Academy of Sciences, 104, 13786–13791.

    Google Scholar 

  • Angus, R.G. and Heselgrave R.J. (1985) Effects of sleep loss on sustained cognitive performance during a command and control simulation. Behavior Research Methods, Instruments and Computers, 17, 55–67.

    Google Scholar 

  • Arendt, J. (1995) Melatonin and the Mammalian Pineal Gland. Chapman & Hall, London (pp. 209).

    Google Scholar 

  • Arendt, J. (1998) Melatonin and the pineal gland: Influence on mammalian seasonal and circadian physiology. Review of Reproduction, 3, 13–22.

    Google Scholar 

  • Babkoff, H. and Krueger, G. P. (1992) Use of stimulants to ameliorate the effect of sleep loss during sustained performance. Military Psychology, 4, 191–205.

    Google Scholar 

  • Babkoff, H., Genser, S.G., Sing, H.C., Thorne, D.R. and Hegge, F.W. (1985) The effects of progressive sleep loss on a lexical decision task: Response lapses and response accuracy. Behavior Research Methods, Instruments and Computers., 17: 614–622.

    Google Scholar 

  • Babkoff, H., Mikulincer, M., Caspy, T., Kempinski, D. and Sing, H.C. (1988) The topology of performance curves during 72 hours of sleep loss: A memory and search task. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 40, 737–756.

    Google Scholar 

  • Babkoff, H., Caspy, T., Mikulincer, M. and Sing, H.C. (1991a) Monotonic and rhythmic influences: A challenge for sleep deprivation research. Psychological Bulletin, 19, 411–428.

    Google Scholar 

  • Babkoff, H., Caspy, T. and Mikulincer, M. (1991b) Subjective sleepiness ratings: The effects of sleep deprivation, circadian rhythmicity and cognitive performance. Sleep, 14, 534–539.

    PubMed  Google Scholar 

  • Babkoff, H., Kelly, T. L., Matteson, L.T., Gomez, S.A., Lopez, A., Hauser, S., Naitoh, P. and Assmus, J. (1992) Pemoline and methylphenidate: Interaction with mood, sleepiness and cognitive performance during 64 hours of sleep deprivation. Military Psychology, 4, 235–265.

    Google Scholar 

  • Babkoff, H., French, J., Whitmore, J. and Sutherlin, R. (2002) Single dose bright light and/or caffeine effect on nocturnal performance. Aviation, Space and Environmental Medicine, 73, 341–350.

    Google Scholar 

  • Babkoff, H., Zukerman, G., Fostick, L. and Ben-Artzi, E. (2005) The effect of the diurnal rhythm and twenty-four hours of sleep deprivation on dichotic temporal order judgment (TOJ). Journal of Sleep Research, 14, 7–15.

    PubMed  Google Scholar 

  • Baddeley, A. D. (1986). Working Memory. Oxford: Oxford University Press.

    Google Scholar 

  • Badia, P., Myers, B., Boecker, M., Culpepper, J. and Harsh, J. (1991) Bright light effects on body temperature, alertness, EEG and behavior. Journal of Physiological Behavior, 50, 583–588.

    Google Scholar 

  • Baker, F.C., Driver, H.S., Rogers, G.G., Paiker, J. and Mitchell, D. (1999) High nocturnal body temperatures and disturbed sleep in women with primary dysmenorrhea. American Journal of Physiology, 277, E1013–E1021.

    PubMed  Google Scholar 

  • Baker, F., Waner, J., Vieira, E., Taylor, S., Driver, H. and Mitchell, D. (2001) Sleep and 24 hour body temperatures: A comparison in young men, naturally cycling women and women taking hormonal contraceptives. Journal of Physiology, 530(Pt3), 565–574.

    PubMed  Google Scholar 

  • Basheer, R., Porkka-Heiskanen, T., Strecker, R.E., Thakkar, M.M. and McCarley, R.W. (2000) Adenosine as a biological signal mediating sleepiness following prolonged wakefulness. Biological Signals Receptors, 9, 319–327.

    Google Scholar 

  • Battig, K., Buzzi, R., Martin, J.R., and Feierabend, J.M. (1984) The effects of caffeine on psychological functions and mental performance. Experimentia, 40, 1218–1223.

    Google Scholar 

  • Beaumont, M., Batejat, D., Pierard, C., Coste, O., Doireau, P., Van Beers, P., Chauffard, F., Chassard, D., Enseln, M., Denis, J.B. and Lagarde, D. (2001) Slow release caffeine and prolonged wakefulness: Effects on vigilance and cognitive performance. Journal of Sleep Research, 10, 265–276.

    PubMed  Google Scholar 

  • Bell-McGinty, S., Habeck, C., Hilton, H.J., Rakitin, B., Scarmeas, N., Zarahn, E., Flynn, J., DeLaPaz, R., Basner, R. and Stern, Y. (2004) Identification and differential vulnerability of a neural network in sleep deprivation. Cerebral Cortex, 14, 496–502.

    PubMed  Google Scholar 

  • Benington, J.H., Kodali, S.K., and Heller, H.C. (1995). Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Research, 692, 79–85.

    PubMed  Google Scholar 

  • Blaxton, T.A., Bookheimer, S.Y., Zeffiro, T.A., Figlozzi, C.M., Gaillard, W.D., and Theodore, W.H. (1990) Functional mapping of human memory using PET: comparisons of conceptual and perceptual tasks. Canadian Journal of Experimental Psychology, 50, 42–56.

    Google Scholar 

  • Bonnet, M.H., Gomez, S., Wirth, O. and Arand, D.L. (1995) The use of caffeine versus prophylactic naps in sustained performance. Sleep, 18, 97–104.

    PubMed  Google Scholar 

  • Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J. and Smith, E.E. (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5, 49–62.

    PubMed  Google Scholar 

  • Brismar K., Hylander, B., Eliasson, K., Rössner, S., and Wetterberg, L. (1988) Melatonin secretion related to side-effects of beta-blockers from the central nervous system. Acta Medica Scandinavica, 223, 525–530.

    PubMed  Google Scholar 

  • Broughton, R.J. (1989) Chronobiological aspects and models of sleep and napping. In: D.F. Dinges and R.J. Broughton (Eds). Sleep and Alertness: Chrononbiological, Behavioral, and Medical Aspects of Napping. Raven, New York (pp. 71–98).

    Google Scholar 

  • Budnick, L.D., Lerman, S.E. and Nicolich, M.J. (1995) An evaluation of scheduled bright light and darkness on rotating shiftworkers: Trial and limitations. American Journal of Industrial Medicine, 27, 771–782.

    PubMed  Google Scholar 

  • Buysse, D.J., Monk, T.H., Reynolds III, C.F., Mesiano, D., Houck, P.R. and Kupfer, D.J. (1993) Patterns of sleep episodes in young and elderly adults during a 36-hour constant routine. Sleep, 16, 632–637.

    PubMed  Google Scholar 

  • Caldwell, J.A. (2005) Fatigue in aviation. Travel Medicine and Infectious Diseases, 3(2), 85–96.

    Google Scholar 

  • Caldwell, J.A. and Caldwell, J.L. (2005) Fatigue in military aviation: An overview of US military-approved pharmacological countermeasures. Aviation, Space and Environmental Medicine, 76(Suppl 7), C39–C51.

    Google Scholar 

  • Caldwell, J.A., Caldwell, J.L., Crowley, J.S. and Jones, H.D. (1995) Sustaining helicopter pilot performance with dexedrine during periods of sleep deprivation. Aviation, Space and Environmental Medicine, 66, 930–937.

    Google Scholar 

  • Caldwell, J.A., Mu, Q., Smith, J.K., Mishory, A., Caldwell, J.L., Peters, G., Brown, D.L. and George, M.S. (2005) Are individual differences in fatigue vulnerability related to baseline differences in cortical activation? Behavioral Neuroscience, 119, 694–707.

    PubMed  Google Scholar 

  • Campbell, S. and Dawson, D. (1990) Enhancement of nighttime alertness and performance with bright ambient light. Journal of Physiological Behavior, 48(2), 317–320.

    Google Scholar 

  • Campbell, S.S., Murphy, P.J., van den Heuvel, C.J., Roberts, M.L. and Stauble, T.N. (1999) Etiology and treatment of intrinsic circadian rhythm sleep disorders. Sleep Medicine Review, 3, 179–200.

    Google Scholar 

  • Cardinali, D.P., and Pévet, P. (1998) Basic aspects of melatonin action. Sleep Medicine Reviews, 2, 175–190.

    PubMed  Google Scholar 

  • Carrier, J. and Monk, T.H. (2000) Circadian rhythms of performance: New trends. Chronobiology International, 17, 719–732.

    PubMed  Google Scholar 

  • Chuah, Y.M.L., Venkatramen, V., Dinges, D.F. and Chee, M.W.L. (2006) The neural basis of inter-individual variability in inhibitory efficiency after sleep deprivation. The Journal of Neuroscience, 26, 7156–7162.

    PubMed  Google Scholar 

  • Cohen, J.D., Forman, S.D., Braver, T.S., Casey, B.J., Servan-Schreiber, D., and Noll, D.C. (1994). Activation of prefrontal cortex in a non-spatial working memory task with functional MRI. Human Brain Mapping, 1, 293–304.

    Google Scholar 

  • Courtney, S.M., Petit, L., Haxby, J.V. and Untergleider, L.G. (1998) The role of prefrontal cortex in working memory: Examining the contents of consciousness. Philosophical Transactions of the Royal Society London, B, 353, 1819–1828.

    Google Scholar 

  • Curtis, C.E., Zald, D.H. and Pardo, J.V. (2000) Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 1503–1510.

    PubMed  Google Scholar 

  • Czeisler, C.A., Weitzman, E.D., Moore-Ed, M.C., Zimerman, J.C. and Knauer, R.S. (1980) Human sleep: Its duration and organization depend on its circadian phase. Science, 210, 1264–1267.

    PubMed  Google Scholar 

  • Daurat, A., Aguirre, A., Foret, J., Gonnet, P., Keromes, A. and Benoit, O. (1993) Bright light affects alertness and performance rhythms during a 24-h constant routine. Physiology and Behavior, 53, 929–936.

    PubMed  Google Scholar 

  • Daurat, A., Foret, J., Benoit, O. and Mauco, G. (2000) Bright light during nighttime: Effects on the circadian regulation of alertness and performance. Biological Signals Reception, 9, 309–318.

    Google Scholar 

  • Dinges, D.F. and Kribbs, M.B. (1991) Performing while sleepy: Effects of experimentally induced sleepiness. In T.H. Monk (Ed). Sleep, Sleepiness and Performance. Wiley, New York (pp. 97–128).

    Google Scholar 

  • Dinges, D.F., Orne, M.T. and Orne, E.C. (1984) Sleepiness during sleep deprivation: The effects of performance demands and circadian phase. Sleep Research, 13, 189.

    Google Scholar 

  • Dinges, D.F, Orne, M.T., Whitehouse, W.G. and Orne, E.C. (1987) Temporal placement of a nap for alertness: Contributions of circadian phase and prior wakefulness. Sleep, 10, 313–329.

    PubMed  Google Scholar 

  • Dorsey, C.M., Teicher, M.H., Cohen-Zion, M., Stefanovic, L., Satlin, A., Tartarini, W., Harper, D. and Lukas, S.E. (1999) Core body temperature in sleep of older female insomniacs before and after passive body heating. Sleep, 22, 891–898.

    PubMed  Google Scholar 

  • Drummond, S.P.A., Brown, G.G., Gillin, J.C., Stricker JL, et al. (2000) Altered brain response to verbal learning following sleep deprivation. Nature, 403, 655–657.

    PubMed  Google Scholar 

  • Drummond, S.P.A., Gillin, J.C. and Brown, G.G. (2001) Increased cerebral response during a divided attention task following sleep deprivation. Journal of Sleep Research, 10, 85–92.

    PubMed  Google Scholar 

  • Durmer, J. and Dinges, D.F. (2005) Neurocognitive consequences of sleep deprivation. Seminar in Neurology, 25, 117–129.

    Google Scholar 

  • Fiez, J.A., Tallal, P., Raichle, M.E., Miezin, F.M., Katz, W.F., and Petersen, S.E. (1995) PET studies of auditory and phonological processing: effects of stimulus characteristics and task demands. Journal of Cognitive Neuroscience, 7, 357–375.

    Google Scholar 

  • Fletcher, P.C., Dolan, R.J., and Frith, C.D. (1995) The functional anatomy of memory. Experientia, 51, 1197–207.

    PubMed  Google Scholar 

  • Fletcher, P.C., Frith, C.D., Grasby, P.M., Shallice, T., Frackowiak, R.S., and Dolan, R.J. (1995) Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain, 118, 401–416.

    PubMed  Google Scholar 

  • Fredholm, B.B., Battig, K., Holmen, J., Nehlig, A., Zvartau, E.E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacology Review, 51, 83–133.

    Google Scholar 

  • French, J., Hannon, P. and Brainard, G. (1990) Effects of bright illuminance on body temperature and human performance. Annual Review of Chronopharmacology Volume 7, France, 37–40.

    Google Scholar 

  • French, J., Whitmore, J., Hannon, P., Brainard, G. and Schiflett, S. (1991) Photic effects on sustained performance. Fifth Annual Workshop on Space Operations Applications and Research, NASA, 3127, 482–486.

    Google Scholar 

  • French, J., Neville, K., Eddy, D.R., Storm, W.F., Cardenas, R., Flynn, C. and Miller, J.C. (2006) Sensitivity of the Space Flight Cognitive Assessment Tool (S-CAT) to Sleep Deprivation (Technical Report No. AFRL-HE-BR-TR-2006–0004). Air Force Research Laboratory, Brooks City-Base, TX.

    Google Scholar 

  • Frey, D.J., Badia, P. and Wright, K.P. Jr. (2004) Inter and intra-individual variability in performance near the circadian nadir during sleep deprivation. Journal of Sleep Research, 13, 305–315.

    PubMed  Google Scholar 

  • Frey, D.J., Badia, P. and Wright, K.P. Jr. (2005) Analysis of inter and intra-individual variability. Journal of Sleep Research, 14, 205–206.

    Google Scholar 

  • Froberg, J.E. (1977) Twenty-four hour patterns in human performance, subjective and physiological variables and differences between morning and evening active subjects. Biological Psychology, 5, 119–134.

    PubMed  Google Scholar 

  • Fuster, J.M. (1989) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.

    Google Scholar 

  • Fuster, J.M. (1995) Memory in the cerebral cortex. Cambridge (MA): MIT Press.

    Google Scholar 

  • Gillberg, M. and Akerstedt, T. (1981) Possible measures of ‘sleepiness’ for the evaluation of disturbed and displaced sleep. In: A. Reinberg, N. Vieux and P.Andlauer (Eds). Night and Shift Work: Biological and Social Aspects. Pergamon, Oxford, England (pp. 155–160).

    Google Scholar 

  • Goldman-Rakic, P. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: F. Plum (Ed.), Handbook of Physiology, Sect 1: The Nervous System, Vol V: Higher Functions of the Brain (pp. 373–417). Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Goldman-Rakic, P.S. (1987) Circuitry of the frontal association cortex and its relevance to dementia. Archives of Gerontology and Geriatrics, 6, 299–309.

    PubMed  Google Scholar 

  • Grasby, P.M, Frith, C.D., Friston, K., Frackowiak, R.S., Dolan, R.J. (1993) Activation of the human hippocampal formation during auditory-verbal long-term memory function. Neuroscience Letters, 163, 185–188.

    PubMed  Google Scholar 

  • Gross, J.B., Gunzelmann, G., Gluck, K.A., Van Dongen, H.P.A. and Dinges, D.F. (2006) Computational modeling of the combined effects of circadian rhythm and sleep deprivation. Proceedings of the 28th Annual Conference of the Cognitive Science Society, 297–302.

    Google Scholar 

  • Habeck, C., Rakiti, Moeller, J., Scarmeas, N., Zarahn, E., Brown, T. and Stern, Y. (2004) An event related fMRI study of the neurobehavioral impact of sleep deprivation on performance of a delayed match-to-sample task. Cognitive Brain Research, 18, 306–321.

    PubMed  Google Scholar 

  • Halsband, U., Krause, B.J., Schmidt, D., Herzog, H., Tellmann, L., and Muller-Gartner, H-W. (1998) Encoding and retrieval in declarative learning: a positron emission tomography study. Behavioral Brain Research, 97, 69–78.

    Google Scholar 

  • Hannon, P., Brainard, G., Childs, R., Gibson, W., French, J., Hanifin, J. and Rollag, M. (1992) Bright light suppresses melatonin and improves cognitive performance during nighttime hours in humans. Proceedings of the 22nd Annual Meeting of the Society for Neuroscience, USA, 195.

    Google Scholar 

  • Harrison, Y. and Espelid, E. (2004) Loss of negative priming following sleep deprivation. Quarterly Journal of Experimental Psychology, 57, 437–446.

    PubMed  Google Scholar 

  • Harrison, Y., and Horne, J.A. (1998) Sleep loss impairs short and novel language tasks having a prefrontal focus, Journal of Sleep Research, 7, 95–100.

    PubMed  Google Scholar 

  • Harrison, Y. and Horne, J.A. (2000a) Sleep loss and temporal memory. Quarterly Journal of Experimental Psychology, 53A, 271–279.

    Google Scholar 

  • Harrison, Y. and Horne, J.A. (2000b) The impact of sleep deprivation on decision making: A review. Journal of Experimental Psychology: Applied, 6, 236–49.

    PubMed  Google Scholar 

  • Heuer, H., Kohlisch, O., and Klein, W. (2005) The effects of total sleep deprivation on the generation of random sequences of key-presses, numbers and nouns. Quarterly Journal of Experimental Psychology A, 58, 275–307.

    Google Scholar 

  • Hichwa, R.D. (1995) II. PET studies of memory: Novel versus practiced free recall of word lists. NeuroImage, 2, 296–305.

    PubMed  Google Scholar 

  • Honey, G.D., Bullmore, E.T. and Sharma, T. (2000) Prolonged reaction time to a verbal memory task predicts increased power of a posterior parietal cortical activation. NeuroImage, 12, 495–503.

    PubMed  Google Scholar 

  • Horne, J.A. (1988) Why We Sleep: The Functions of Sleep in Humans and Other Mammals. Oxford University Press, Oxford, England (pp. 57–60; 89–90; 130–137).

    Google Scholar 

  • Hunt, A.E., Al-Ghoul, W.M., Gillette, M.U., and Dubocovich, M.L. (2001). Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. American Journal of Physiology, 280, C110–C118.

    PubMed  Google Scholar 

  • Jacobson, B.H. and Edgley, B.M. (1987) Effects of Caffeine on simple reaction time and movement time. Aviation, Space and Environmental Medicine, 58, 1153–1156.

    Google Scholar 

  • Jennings, J.R., Monk, T.H., and van der Molen, M.W. (2003) Sleep deprivation influences some but not all processes of supervisory attention. Psychological Science, 14, 473–479.

    PubMed  Google Scholar 

  • Jessen, A.B., Toubro, S., and Astrup A. (2003) Effect of chewing gum containing nicotine and caffeine on energy expenditure and substrate utilization in men. American Journal of Clinical Nutrition, 77, 1442–1447.

    PubMed  Google Scholar 

  • Johnson, L.C. (1982) Sleep deprivation and performance. In: W.B. Webb (Ed). Biological Rhythms, Sleep and Performance. Wiley, New York (pp. 11–141).

    Google Scholar 

  • Johnson, M.P., Duffy, J.F., Dijk, D.J., Rhonda, J.M., Dyal, C.M. and Czeisler, C.A. (1992) Short-term memory, alertness and performance: A reappraisal of their relationship to body temperature. Journal of Sleep Research, 1, 24–29.

    PubMed  Google Scholar 

  • Jonides, J., Smith, E.E., Koeppe, R.A., Awh, E. Minoshima, S., and Mintun, M.A. (1993) Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    PubMed  Google Scholar 

  • Just, M., and Carpenter, P. (1992) A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99, 122–149.

    PubMed  Google Scholar 

  • Kajimura, N., Uchiyama, M., Takayama, Y., Uchida, S., Uema, T., Kato, M., Sekimoto, M., Watanabe, T., Nakajima, T., Horikoshi, S., Ogawa, K., Nishikawa, M., Hiroki, M., Kudo, Y., Matsuda, H., Okawa, M., and Takahashi K. (1999) Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. Journal of Neuroscience, 19, 10065–10073.

    PubMed  Google Scholar 

  • Kelly, G.S. (2007) Body temperature variability (part 2): Masking influences of body temperature variability and a review of body temperature in disease. Alternative Medicine Review, 12, 49–62.

    PubMed  Google Scholar 

  • Kjellberg, A. (1977) Sleep deprivation and some aspects of performance lapses and other attentional effects. Waking and Sleeping, 1, 145–148.

    Google Scholar 

  • Koslowsky, M. and Babkoff, H. (1992) Meta-analysis of the relationship between sleep deprivation and performance. Chronobiology International, 9, 132–136.

    PubMed  Google Scholar 

  • Krause, B. J., Schmidt, D., Mottaghy, F. M., Taylor, J., Halsband, U., Herzog, H., Tellmann, L., and Müller-Gärtner, H-W. (1999) Episodic retrieval activates the precuneus irrespective of the imagery content of word pair associates. A PET study. Brain, 122, 255–263.

    PubMed  Google Scholar 

  • Krauchi, K., Knoblauch, V., Wirtz-Justice, A. and Cajochen, C. (2005) Challenging the sleep homeostat does not influence the thermoregulatory system in men: Evidence from a nap vs. sleep-deprivation study. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 29, R1052–R1061.

    Google Scholar 

  • Kubota, T., Uchiyama, M., Suzuki, H., Shibui, K., Kim, K., Tan, X., Tagaya, H., Okaya, M. and Inoue, S. (2002) Effects of nocturnal bright light on saliva melatonin, core body temperature and sleep propensity rhythms in human subjects. Neuroscience Research, 42(8), 115–122.

    PubMed  Google Scholar 

  • Landis, C.A., Savage, M.V., Lentz, M.J. and Brengelmann, G.L. (1998) Sleep deprivation alters body temperature dynamics to mild cooling and heating not sweating thresholds in women. Sleep, 21, 101–108.

    PubMed  Google Scholar 

  • Lieberman, H.R., Waldhauser, F., Garfield, G., Lynch, H. and Wurtman, R. (1984) Effects of melatonin on human mood and performance. Brain Research, 323, 201–207.

    PubMed  Google Scholar 

  • Lieberman, H.R., Wurtman, R.J., Emde, G.G. and Coviella, I.L. (1987) The effects of caffeine and aspirin on mood and performance. Journal of Clinical Psychopharmacology, 7(5), 315–320.

    PubMed  Google Scholar 

  • Lieberman, H.R., Tharion, W.J., Shukitt-Hale, B., Speckman, K.L. and Tulley, B. (2002) Effects of caffeine, sleep loss and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology, 164, 250–261.

    PubMed  Google Scholar 

  • Lim, J., Choo, W.C. and Chee, M.W. (2007) Reproducibility of changes in behavior and fMRI activation associated with sleep deprivation in a working memory task. Sleep, 30, 61–70.

    PubMed  Google Scholar 

  • Liu, C., Weaver, D.R., Jin, X., Shearman, L.P., Pieschl, R.L., Gribkoff, V.K. and Reppert, S.M., (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 19, 91–102.

    PubMed  Google Scholar 

  • Loke, W.H. (1988) Effects of caffeine on mood and memory. Physiology and Behavior, 44, 367–372.

    PubMed  Google Scholar 

  • Long, M.A., Jutras, M.J., Connors, B.W. and Burwell, R.D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature Neuroscience, 8, 61–66.

    PubMed  Google Scholar 

  • Lynch, H.J., Wurtman, R.J., Moskowitz, M.A., Archer, M.C., and Ho, M.H. (1975) Daily rhythm in human urinary melatonin. Science, 187, 169–171.

    PubMed  Google Scholar 

  • Macchi, M.M and Bruce, J.M. (2004) Human pineal physiology and functional significance of melatonin. Frontiers of Neuroendocrinology, 25, 177–195.

    Google Scholar 

  • Mason, R., and Brooks, A. (1988) The electrophysiological effects of melatonin and a putative melatonin antagonist (N-acetyltryptamine) on rat suprachiasmatic neurones in vitro. Neuroscience Letters, 95, 296–301.

    PubMed  Google Scholar 

  • McCarthy, G., Blamire, A.M., Puce, A., Nobre, A.C., Bloch, G., Hyder, F., Goldman-Rakic, P.S., and Shulman, R.G. (1994) Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proceedings of the National Academy of Sciences, USA, 91, 8690–8694.

    Google Scholar 

  • McIntyre, I.M., Norman, T.R., Burrows, G.D. and Armstrong, S.M. (1989) Human melatonin suppression by light is intensity dependent. Journal of Pineal Research, 6, 149–156.

    PubMed  Google Scholar 

  • McLellan, T.M., Ducharme, M.B., Canini, F., Moroz, D., Bell, D.G., Baranski, J.V., Gil, V., Buguet, A., and Radomski, M.W. (2002) Effect of modafinil on core temperature during sustained wakefulness and exercise in a warm environment. Aviation, Space and Environmental Medicine, 73, 1079–1088.

    Google Scholar 

  • Mikulincer, M., Babkoff, H., Caspy, T. and Sing, H.C. (1989) The effects of 72 hours of sleep loss on psychological variables. British Journal of Psychology, 80, 145–162.

    PubMed  Google Scholar 

  • Mikulincer, M., Babkoff, H., Caspy, T. and Weiss, H. (1990) The impact of cognitive interference on performance during prolonged sleep loss. Psychological Research, 52, 80–86.

    PubMed  Google Scholar 

  • Minors, D.S. and Waterhouse, J.M. (1981) Circadian Rhythms and the Human. Wright, Bristol, England.

    Google Scholar 

  • Mitler, M.M., Carskadon, M.A., Czeisler, C.A., Dement, W.C., Dinges, D.F. and Graeber, R.C. (1988) Catastrophes, sleep and public policy: Consensus report. Sleep, 11, 100–109.

    PubMed  Google Scholar 

  • Monk, T.H. (1987) Subjective ratings of sleepiness: The underlying circadian mechanisms. Sleep, 10, 343–353.

    PubMed  Google Scholar 

  • Monk, T.H. (1991) Circadian aspects of subjective sleepiness. In: T.H. Monk (Ed). Sleep, Sleepiness and Performance. Wiley, New York (pp. 39–63).

    Google Scholar 

  • Monk, T.H., and Carrier, J. (1997) Speed of mental processing in the middle of the night. Sleep, 20, 399–401.

    PubMed  Google Scholar 

  • Montgomery, V.L. (2007) Effect of fatigue, workload, and environment on patient safety in the pediatric intensive care unit. Pediatric Critical Care Medicine, 8(Suppl 2), S11–S16.

    PubMed  Google Scholar 

  • Murray, E.J., Williams, H.L. and Lubin, A. (1958) Body temperature and psychological ratings during sleep deprivation. Journal of Experimental Psychology, 56, 271–273.

    PubMed  Google Scholar 

  • Muzur, A., Pace-Schott, E.F., and Hobson, J.A. (2002) The prefrontal cortex in sleep. Trends in Cognitive Science, 6, 475–481.

    Google Scholar 

  • Ninokura, Y., Mushiake, H. and Tanji, J. (2003) Representation of the temporal order of visual objects in the primate lateral prefrontal cortex. Journal of Neurophysiology, 89, 2868–2873.

    PubMed  Google Scholar 

  • Owens, J. (2007) Sleep loss and fatigue in healthcare professionals. Journal of Perinatal and Neonatal Nursing, 21, 92–100.

    PubMed  Google Scholar 

  • Pandi-Perumal, S.R., Smits, M., Spence, W., Srinivasan, V., Cardinali, D.P., Lowe, A.D. and Kayumov, L. (2007) Dim light melatonin onset (DLMO): A tool for the analysis of circadian phase in human sleep and chronobiological disorders. Progress in Neurospychopharmacology and Biological Psychiatry, 31, 1–11.

    Google Scholar 

  • Patrick, G.T.W. and Gilbert, J.A. (1896) On the effects of loss of sleep. Psychological Review, 3, 469–483.

    Google Scholar 

  • Penetar, D., McCann, U. and Thorne, D. (1993) Caffeine reversal of sleep deprivation effects on alertness and mood. Psychopharmacology, 112, 359–365.

    PubMed  Google Scholar 

  • Perlstein, W.M., Carter, C.S., Noll, D.C. and Cohen, J.D. (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms of schizophrenia. American Journal of Psychiatry, 158, 1105–1113.

    PubMed  Google Scholar 

  • Petrides, M., Alivisatos, B., Meyer, E., and Evans, A.C. (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, USA, 90, 878–882.

    Google Scholar 

  • Philibert, I. (2005) Sleep loss and performance in residents and nonphysicians: A meta-analytic examination. Sleep, 28, 392–402.

    Google Scholar 

  • Pigeau, R., Naitoh, P., Buguet, A., McCann, C., Baranski, J., Taylor, M., Thompson, M. and Mack, I. (1995) Modafinil, d-amphetamine and placebo during 64 hours of sustained mental work. I. Effects on mood, fatigue, cognitive performance and body temperature. Journal of Sleep Research, 4, 212–228.

    PubMed  Google Scholar 

  • Pilcher, J.J., and Huffcutt, A.I. (1996) Effects of sleep deprivation on performance: a meta-analysis. Sleep, 19, 318–326.

    PubMed  Google Scholar 

  • Pilcher, J. J., McClelland, L. E., Moore, D. D., Haarmann, H., Baron, J., Wallsten, T. S., and McCubbin, J. A. (2007). Language performance under sustained work and sleep deprivation conditions. Aviation, Space and Environmental Medicine, 78 (5, Suppl.), B25–38.

    Google Scholar 

  • Porkka-Heiskanen, T., Strecker, R.E. and McCarley, R.W. (2000) Brain site specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study. Neuroscience, 99, 507–517.

    PubMed  Google Scholar 

  • Portas, C.M., Thakkar, M., Rainnie, D.G., Greene, R.W., McCarley, R.W. (1997) Role of adenosine in behavioral state modulation: A microdialysis study in the freely moving cat. Neuroscience, 79, 225–235.

    PubMed  Google Scholar 

  • Rainnie, D.G., Grunze, H.C., McCarley, R.W. and Greene, RW. (1994) Adenosine inhibition of mesopontine cholinergic neurons: Implications for EEG arousal. Science, 263, 689–692.

    PubMed  Google Scholar 

  • Radulovacki, M., Miletich, R.S., and Green, R.D. (1982) N6 (L-phenylisopropyl) adenosine (L-PHA) increases slow-wave sleep (S2) and decreases wakefulness in rats. Brain Research, 246, 178–180.

    PubMed  Google Scholar 

  • Rosenthal, L., Roehrs, T., Zwyghuizen-Doorenbos, A., Plath, D. and Roth, T. (1991) Alerting effects of caffeine after normal and restricted sleep. Neuropsychopharmacology, 4(2), 103–108.

    PubMed  Google Scholar 

  • Rudge, P., and Warrington, E.K. (1991) Selective impairment of memory and visual perception in splenial tumours. Brain, 114, 349–360.

    PubMed  Google Scholar 

  • Savourey, G. and Bittel, J. (1994) Cold thermoregulatory changes induced by sleep deprivation in men. European Journal of Applied Physiology, 69, 216–220.

    Google Scholar 

  • Sewitch, D.E., Kittrell, E.M.W, Kupfer, D.J. and Reynolds, C.F. (1986) Body temperature and sleep architecture in response to a mild cold stress in women. Physiology and Behavior, 36, 951–957.

    PubMed  Google Scholar 

  • Shallice, T. (1988) From Neuropsychology to Mental Structure. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shimamura, A. P. (1994). Frontal lobes and memory. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803–813). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sing, H.C., Thorne, D.R., Hegge, F.W. and Babkoff, H. (1985) Trend and rhythm analysis of time-series data using complex demodulation. Behavior Research Methods, Instruments and Computers, 17, 623–629.

    Google Scholar 

  • Strecker, R.E., Morairty, S., Thaker, M.M., Porkka-Heiskanen, T., Basheer, R., Dauphin, L.J., Rainnie, D.G., Portas, C.M., Greene, R.W. and McCarley, R.W. (2000) Adenosinergic modulation of basal forebrain and preoptic anterior hypothalamic neural activity in the control of behavioral state. Behavior and Brain Research, 115, 183–204.

    Google Scholar 

  • Stricker, J.L, Brwon, G.G., Wetherell, L.A. and Drummond, S.P.A. (2006) The impact of sleep deprivation and task difficulty on networks of fMRI brain response. Journal of the International Neuropsychological Society, 12, 591–597.

    PubMed  Google Scholar 

  • Stuss, D. T., Eskes, G. A., and Foster, J. K. (1994). Experimental neuropsychological studies of frontal lobe functions. In F. Boiler & Gazzaniga (Ed.), The cognitive neurosciences (pp. 1341–1356). Cambridge, MA: MIT Press.

    Google Scholar 

  • Summala, M. and Mikkala, T. (1994) Fatal accidents among car and truck drivers: Effects of fatigue, age and alcohol consumption. Human Factors, 36, 315–326.

    PubMed  Google Scholar 

  • Swartz, B. E., Halgren, E., Fuster, J. M., Simpkins, E., Gee, M., and Mandelkern, M. (1995). Cortical metabolic activation in humans during a visual memory task. Cerebral Cortex, 5, 205–214.

    PubMed  Google Scholar 

  • Szatkowska, I., Szymanska, O. and Grabowska, A. (2004) The role of the human ventromedial prefrontal cortex in memory for contextual information. Neuroscience Letters, 364, 71–75.

    PubMed  Google Scholar 

  • Thomas, M., Sing, H., Belenky, G., Holcomb, H., et al. (2000) Neural basis of alertness and cognitive performance impairment during sleepiness. I. Effects of 24 hours of sleep deprivation on human regional brain activity. Journal of Sleep Research, 9, 335–352.

    PubMed  Google Scholar 

  • Tzischinsky, O., Shlitner, A. and Lavie, P. (1993) The association between the nocturnal sleep gate and nocturnal onset of urinary 6-sulfaoxymelatonin. Journal of Biological Rhythms, 8, 199–209.

    PubMed  Google Scholar 

  • Valenstein, E., Bowers, D., Verfaellie, M, Heilman, K.M., Day, A., and Watson, R.T. (1987) Retrosplenial amnesia. Brain, 110, 1631–1646.

    PubMed  Google Scholar 

  • Van Asselen, M., Kessels, R.P.C., Neggers, S.F.W., Kappele, L.J., Frijns, C.J.M. and Postma, A. (2006) Brain areas involved in spatial working memory. Neuropsychologia, 44, 1185–1194.

    PubMed  Google Scholar 

  • Van Dongen, H.P., and Dinges, D.F. (2003) Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance. Journal of Sleep Research, 12, 181–187.

    PubMed  Google Scholar 

  • Van Dongen, H.P.A., Maislin, G., Mullington, J.M. and Dinges, D.F. (2003) The cumulative cost of additional wakefulness: Dose-response effects n neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26, 117–126.

    PubMed  Google Scholar 

  • Van Dongen, H.P., Baynard, M.D., Maislin, G. and Dinges, D.F. (2004) Systematic inter-individual differences in neurobehavioral impairment from sleep loss: Evidence of trait-like differential vulnerability. Sleep, 27, 423–433.

    PubMed  Google Scholar 

  • Van Dongen, H.P., Vittelaro, K.M. and Dinges, D.F. (2005) Individual differences in adult human sleep and wakefulness: Leitmotif for a research agenda. Sleep, 28, 479–496.

    PubMed  Google Scholar 

  • Wang, Z., Smith, C.E. and Atchley, W.R. (2007) Application of complex demodulation b Zip and b HLH-PAS protein domains. Mathematical Biosciences, 207, 204–218.

    PubMed  Google Scholar 

  • Warrington, E.K., and Weiskrantz, L. (1982) Amnesia: a disconnection syndrome? Neuropsychologia, 20, 233–248.

    PubMed  Google Scholar 

  • Wilkinson, R.T. (1965) Sleep deprivation. In Edholm, O.G. and Bacharach, A.L. (Eds.). Physiology of Human Survival. Academic, London (pp. 99–430).

    Google Scholar 

  • Wilkinson, R.T. (1990) Response-stimulus intervals in choice serial reaction time: Interaction with sleep deprivation, choice and practice. Quarterly Journal of Experimental Psychology, 42, 401–423.

    PubMed  Google Scholar 

  • Williams, H.L. and Williams, C.L. (1966) Nocturnal EEG profiles and performance. Psychophysiology, 3, 164–175.

    PubMed  Google Scholar 

  • Williams, H.L., Lubin, A. and Goodnow, J.J. (1959) Impaired performance with acute sleep loss. Psychological Monograph, 73, 1–26.

    Google Scholar 

  • Wright, K.P. Jr., Badia, P., Myers, B.L., Plenzler, S.C. and Hakel, M. (1997a) Caffeine and light effects on nighttime melatonin and temperature levels in sleep-deprived humans. Brain Research, 747, 78–84.

    PubMed  Google Scholar 

  • Wright, K.P. Jr., Badia, P., Myers, B.L. and Plenzler, S.C. (1997b) Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. Journal of Sleep Research, 6, 26–35.

    PubMed  Google Scholar 

  • Wright, K.P. Jr., Badia, P., Myers, B.L., Plenzler, S.C. and Drake, C.L. (1997c) Enhancement of nighttime alertness in women with bright light and caffeine during 48 hr of sleep deprivation. Sleep Research, 26, 635.

    Google Scholar 

  • Wright, K.P. Jr., Badia, P., Myers, B.L., Plenzler, S.C. and Drake, C.L. (1997d) Caffeine and bright light effects on nighttime melatonin and body temperature in women during sleep deprivation. Sleep Research, 26, 636.

    Google Scholar 

  • Wright, K.P. Jr., Hull, J.T. and Czeisler, C.A. (2002) Relationship between alertness, performance and body temperature in humans. American Journal of Physiology, Regulation, Integration and Comparative Physiology, 283, R1370–R1377.

    Google Scholar 

  • Wu, J.C., Gillin, J.C., Buchsbaum, M.S., Chen, P., Keator, D.B., Khosla Wu, N., Darnall, L.A., Fallon, J.H., and Bunney, W.E. (2006) Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology, 31, 2783–2792.

    PubMed  Google Scholar 

  • Wyatt, J.K., Cajochen, C., Ritz-De Cecco, A., Czeisler, C.A., and Dijk, D.J. (2004). Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep, 27, 374–381.

    PubMed  Google Scholar 

  • Yoshihisa, N., Mushiake, H. and Tanji, J. (2003) Representation of the temporal order of visual objects in the primate lateral prefrontal cortex. Journal of Neurophysiology, 89, 2868–2873.

    Google Scholar 

  • Zhdanova, I.V. (2005) Melatonin as a hypnotic: pro. Sleep Medicine Reviews, 9, 51–65.

    PubMed  Google Scholar 

  • Zhdanova, I.V. and Tucci, V. (2003) Melatonin, circadian rhythms and sleep. Current Treatment Options in Neurology, 5, 225–229.

    PubMed  Google Scholar 

  • Zhdanova, I.V., Wurtman, R.J., Morabito, C., Piotrovska, V.R., and Lynch, H.J. (1996) Effects of low oral doses of melatonin, given 2–4 hours before habitual bedtime, on sleep in normal young humans. Sleep, 19, 423–431.

    PubMed  Google Scholar 

  • Zukerman, G. (2004). Cognitive performance decrement as function of sleep deprivation and circadian (diurnal) rhythm. Unpublished doctoral dissertation, Bar-Ilan University, Ramat-Gan, Israel.

    Google Scholar 

  • Zukerman, G., Goldstein, A., and Babkoff, H. (2007). The effect of 24–40 hours of sleep deprivation on the P300 response to auditory target stimuli. Aviation, Space, and Environmental Medicine, 78 (S1), B216–B223.

    PubMed  Google Scholar 

  • Zully, J., Wever, R. and Aschoff, J. (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Archiven, 391, 314–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Babkoff, H., Goldstein, A., Zukerman, G. (2008). Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_15

Download citation

Publish with us

Policies and ethics