Skip to main content

Oceanic Pillow Lavas and Hyaloclastites as Habitats for Microbial Life Through Time – A Review

  • Chapter
Links Between Geological Processes, Microbial Activities&Evolution of Life

Abstract

This chapter summarizes research undertaken over the past 15 years upon the microbial alteration of originally glassy basaltic rocks from submarine environments. We report textural, chemical and isotopic results from the youngest to the oldest in-situ oceanic crust and compare these to data obtained from ophiolite and greenstone belts dating back to c. 3.8 Ga. Petrographic descriptions of the granular and tubular microbial alteration textures found in (meta)-volcanic glasses from pillow lavas and volcanic breccias are provided and contrasted with textures produced by abiotic alteration (palagonitization). The geological setting in particular the degree of deformation and metamorphism experienced by each study site is documented in outcrop photographs, geological maps and stratigraphic columns (where possible). In addition, X-ray mapping evidence and carbon isotopic data that are consistent with a biogenic origin for these alteration textures is explained and a model for their formation is presented. Lastly, the petrographic observations and direct radiometric dating techniques that have been used to establish the antiquity and syngenicity of these microbial alteration textures are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrajano TA, Sturchio NC, Kennedy BM, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinization of Zambales ophiolite, Philippines. Appl Geochem 5:625–630

    Article  Google Scholar 

  • Alt JC, Mata P (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet Sci Lett 181:301–313

    Article  Google Scholar 

  • Alt JC, Kinoshita H, Stokking LB, et al (1993) Proc. ODP, Init. Repts, 148. (U. S. Government Printing Office), Washington

    Google Scholar 

  • Alt JC, Laverne C, Vanko DA, Tartarotti P, Teagle DAH, Bach W, Zuleger E, Erzinger J, Honnorez J, Pezard PA, Becker K, Salisbury MH, Wilkens RH (1996) Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140 and 148). In: Alt JC, Kinoshita H, Stokking LB, Michael JP (eds) Proc. ODP, Sci. Results 148, College Station, TX, (Ocean Drilling Program), pp 417–434

    Google Scholar 

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeo Palaeoclim Palaeoecol 219:131–55

    Article  Google Scholar 

  • Armstrong RA, Compston W, de Wit MJ, Williams IS (1990) The stratigraphy of the 3.5–3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth Planet Sci Lett 101:90–106

    Article  Google Scholar 

  • Bach W, Edwards KJ (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887

    Article  Google Scholar 

  • Balashov A (1996) Paleoproterozoic geochronology of the Pechenga-Varzuga structure, Kola Peninsula. Petrology 4:1–22

    Google Scholar 

  • Banerjee NR, Muehlenbachs K (2003) Tuff Life: bioalteration in volcaniclastic rocks from the Ontong Java Plateau. Gechem Geophys Geosyst 4(4). doi:1029/2002GC000470

    Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2004) The potential for early life hosted in basaltic glass on Mars. Second Conference on Early Mars: Geologic, hydrologic, and climatic evolution and the implications for life. Jackson Hole, Wyoming, USA

    Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit MJ (2006) Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Article  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H, Staudigel H, Muehlenbachs K, Heaman L, Van Kranendonk MJ (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490

    Article  Google Scholar 

  • Bebien J, Shallo M, Mania K, Gega D (1998) The Shebenik Massif (Albania): a link between MOR- and SSZ-type ophiolites? Ofiliti 23(1):7–15

    Google Scholar 

  • Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Brown GE Jr, Guyit F (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: a STXM and TEM study. Earth Planet Sci Lett 260:187–200

    Article  Google Scholar 

  • Berndt ME, Allen DE, Seyfried DE Jr (1996) Reduction of CO_2 during serpentinitization of olivine at 300°C and 500 bar. Geology 24:351–354

    Article  Google Scholar 

  • Boyet M, Blichert-Toft J, Rosing M, Storey M, Telouk P, Albarede F (2003) 142Nd evidence for early Earth differentiation. Earth Planet Sci Lett 214:427–442

    Article  Google Scholar 

  • Brandl G, de Wit MJ (1997) The Kaapvaal Craton, South Africa. In: de Wit MJ, Ashwal L (eds) Greenstone Belts. Oxford Univ Press, UK, pp 581–607

    Google Scholar 

  • Cloos M (1990) Nicasio pillow basalts: a fragment of sea-mount accreted during Franciscan subduction, northern California. A.A.P.G., Pacific Section Guidebook No 66:9–16

    Google Scholar 

  • Coleman RG (2000) Prospecting for ophiolites along the California continental margin. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geol Soc Am Spec Pap 351:351–364

    Google Scholar 

  • Coleman RG, Lee DE (1963) Glaucophane-bearing metamorphic rock types of the Cazadeno area, California. J Petrol 4:260–301

    Google Scholar 

  • Dal Piaz GV, Zirpoli G (1979) Occurrence of eclogite relics in the ophiolitic nappe from Marine d’Albo, Northern Corsica. N Jb Miner Mh 3:118–122

    Google Scholar 

  • Daniel J-M, Jovilet L, Goffe B, Poinssot C (1996) Crustal-scale strain partitioning: footwall deformation below the Alpine Oligo-Miocene detachment of Corsica. J Struct Geol 18:41–59

    Article  Google Scholar 

  • Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WSD, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230

    Article  Google Scholar 

  • de Ronde CEJ, de Wit MJ (1994) Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics 13:983–1005

    Article  Google Scholar 

  • de Wit MJ (2004) Archean greenstone belts do contain fragments of ophiolites. In: Kusky TM (ed) Precambrian Ophiolites and Related Rock. Developments in Precambrian Geology 13 Elsevier, Amsterdam, Holland

    Google Scholar 

  • de Wit MJ, Hart RA, Hart RJ (1987). The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust. J Afr Earth Sci 6:681–730

    Article  Google Scholar 

  • Detrick R, Honnorez J, Bryan WB, Juteau T, et al. (1988) Proc. ODP, Init. Repts, 106/109. (U. S. Government Printing Office), Washington

    Google Scholar 

  • Dilek Y, Thy P (1998) Structure, petrology, and seafloor spreading tectonics of the Kizildag ophiolite, Turkey. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geologic record. Geol Soc London Spec Publ 148:43–69

    Google Scholar 

  • Dilek Y, Moores EM, Furnes H (1998) Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers. In: Buck R, Karson J, Delaney P, Lagabrielle Y (eds) Faulting and Magmatism at Mid-Ocean Ridges. Geophysical Monograph, American Geophysical Union, Washington, DC 106:216–266

    Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2007) Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res 11:453–475

    Article  Google Scholar 

  • Dmitriev L, Heirtzler J, et al (1978) Init. Repts. DSDP, 46. (U. S. Government Printing Office), Washington

    Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-oxidising, Chemolithoautotrophic α- andγ-Proteobacteria from the Deep Sea. Appl Environ Microbiol 69:2906–2913

    Article  Google Scholar 

  • Edwards, KJ; Bach W; McCollom TM (2005). Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends in Microbiol 13:449–456

    Article  Google Scholar 

  • Evarts RC, Schiffman P (1983) Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California. Am J Sci 283:289–340

    Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) The extent of microbial life in the volcanic crust of the ocean basins. Science 281:978–979

    Article  Google Scholar 

  • Fisk MR, Staudigel H, Smith DC, Haveman SA (1999) Evidence of microbial activity in the oldest ocean crust: EOS 80:F84–85

    Google Scholar 

  • Fisk MR, Thorseth IH, Urbach E, Giovannoni SJ (2000) Investigation of microorganisms and DNA from surface thermal water and rock from the east flank of the Juan de Fuca Ridge. In: Fisher A, Davis EE, Escutia C (eds) Proc. ODP, Sci. Results 168. College Station, TX (Ocean Drilling Program), 167–174

    Google Scholar 

  • Fisk MR, Storrie-Lombardi MC, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst 4(4). doi:10.1029/2003GC000387

    Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardie MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6(1):48–68

    Article  Google Scholar 

  • Foriel J, Philippot P, Rey P, Somogyi A, Banks D, Menez B (2004) Biological control of Bl/Br and low sulphate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth Planet Sci Lett 228:451–463

    Article  Google Scholar 

  • Fouquet Y, Knott R, Cambon P, Fallick A, Rickard D, Desbruyeres D (1996) Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12ˆ43’N on the East Pacific Rise. Earth Planet Sci Lett 144:147–162

    Article  Google Scholar 

  • Fournier M, Jovilet L, Goffe B, Dubois R (1991) Alpine Corsica metamotphic core complex. Tectonics 10:1173–1186

    Article  Google Scholar 

  • Furnes H, Thorseth IH, Tumyr O, Torsvik T, Fisk MR (1996) Microbial activity in the alteration of glass from pillow lavas from Hole 896A. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the Ocean Drilling Program, Ocean Drilling Program, College Station, TX Scientific Results 148: 191–206

    Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Thorseth IH (1999) Depth of active bio-alteration in the ocean crust: costa Rica Rift (Hole 504B). Terra Nova 11:228–233

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Thorseth IH, Tumyr O (2001a) Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chem Geol 173:313–330

    Article  Google Scholar 

  • Furnes H, Staudigel H, Thorseth IH, Torsvik T, Muehlenbachs K, Tumyr O (2001b) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2(8). doi:10.1029/2000GC000150

    Google Scholar 

  • Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Xenophontos C (2001c) Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc London 158:75–84

    Article  Google Scholar 

  • Furnes H, Hellevang B, Dilek Y (2001d) Cyclic volcanic stratigraphy in a Late Ordovician marginal basin, west Norwegian Caledonides. Bull Volcanol 63:164–178

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Tumyr O, Lang S (2002a) Bio-signatures in metabasaltic glass of a Caledonian ophiolite West Norway. Geol Mag 139:601–608

    Article  Google Scholar 

  • Furnes H., Thorseth IH, Torsvik T, Muehlenbachs K, Staudigel H, Tumyr O (2002b) Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review. In: Smellie JL, Chapman MG (eds) Volcano-Ice Interaction on Earth and Mars. Geol Soc London, Spec Publ 202, 407–421

    Google Scholar 

  • Furnes H, Muehlenbachs K (2003) Bioalteration recorded in ophiolitic pillow lavas. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth’s History, vol 218. Geological Society of London Special Publications, pp 415–426

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit MJ (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Kontinen A (2005) Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precamb Res 136: 125–137

    Article  Google Scholar 

  • Furnes H, Dilek Y, Muehlenbachs K, Banerjee NR (2006) Tectonic control of bioalteration in modern and ancient oceanic crust as evidenced by C-isotopes. The Island Arc 15:143–155

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, de Wit M, McLoughlin N, Van Kranendonk M (2007a) Bioalteration textures in recent to mesoarchean pillow lavas: a petrographic signature of subsurface life in oceanic igneous rocks. Precamb Res 158:156–176

    Article  Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007b) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Article  Google Scholar 

  • Gibson EK, Clemett SJ, Thomas-Keprta KL, McKay DS, Wentworth SJ, Robert F, Verchovsky AB, Wright IP, Pillinger CT, Rice T, Van Leer B (2006) Observation and analysis of in situ carbonaceous matter in Nakhla: part II (2006). The 37th Lunar and Planetary Science Conference, Houston 2006, abstract 2039

    Google Scholar 

  • Giovannoni SJ, Fisk MR, Mullins TD, Furnes H (1996) Genetic evidence for endolithic microbial life colonizing basalic glass/seawater interfaces. In: Alt J, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drill. Program, College Station, Texas 148:207–214

    Google Scholar 

  • Hanski EJ, Huhma H, Smolkin VF, Vaasjoki M (1990) The age of the ferropicritic volcanics and comagmatic intrusions at pechenga, Kola Peninsula, USSR. Geol Soc Finl Bull 62:123–133

    Google Scholar 

  • Hoefs J (1997) Stable Isotope Geochemistry, Springer, pp 201

    Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga Coniform Stromatolites in the Warrawoona Group, Western Australia. Bull Geol Soc Am 111:1256–1262

    Article  Google Scholar 

  • Ingersoll RV (2000) Models for the origin and emplacement of Jurassic ophiolites of northern California. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and Oceanic Crust: new insights from field Studies and the Ocean Drilling Program. Geol Soc Am Spec Pap 351:395–402

    Google Scholar 

  • Karson JA (1998) Internal structure of oceanic lithosphere: a perspective from tectonic windows. In: Buck R, Karson J, Delaney P, Lagabrielle Y (eds) Faulting and Magmatism at Mid-Ocean Ridges. Geophysical Monograph, 106: 177–218. American Geophysical Union, Washington, DC

    Google Scholar 

  • Kelley DS (1996) Methane-rich fluids in the oceanic crust. J Geophys Res 101:2943–2962

    Article  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludvig K, Glickson D, Buckman K, Bradley AS, Brazelton WL, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva S (2005) A serpentine-hosted ecosystem: The Lost City hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Kelts K, McKenzie JA. (1982) Diagenetic dolomite formation in Quarternary anoxic diatomaceous muds of Deep Sea Drilling Project Leg 64, Gulf of California. Init. Reps. DSDP, 64. (U. S. Government Printing Office), Washington, pp 553–569

    Google Scholar 

  • Komiya T, Maruyama S, Masusa T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8-3.7 Ga: Field evidence from the Isua accretionary complex, southern West Greenland. J Geol 107:515–554

    Article  Google Scholar 

  • Kontinen A (1987) An early Proterozoic ophiolite – The Jormua mafic-ultramafic complex, northeastern Finland. Precamb Res 35:313–341

    Article  Google Scholar 

  • Kröner A, Zhao GC, Wilde SA, Zhai MG, Passchier CW, Sun M, Guo JH, O’Brian PJ, Walte N (2001) A Late Archaean to Palaeoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of North China. Guidebook for Penrose Conference Field Trip, September 2002. Chinese Academy of Sciences, Beijing, pp 63

    Google Scholar 

  • Krumbein WE, Urzi CECA, Gehrman C (1991) Biocorrosion and biodeterioration of antique and medieval glass. Geomicrob J 9:139–160

    Article  Google Scholar 

  • Lemoine M, Tricard P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Appennines): In search of a genetic model. Geology 15:622–625

    Article  Google Scholar 

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381

    Article  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalts from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  Google Scholar 

  • Luydendyk BP, Cann JR. et al (1978) Init. Repts. DSDP, 49, Washington (U. S. Government Printing Office)

    Google Scholar 

  • Malpas J, Moores EM, Panayiotou A, Xenophontos C (1990) Ophiolites: Oceanic Crustal Analogues. Proceeding of the Symposium “Troodos 1987”. The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp 733

    Google Scholar 

  • Maruyama S, Liou JG (1988) Petrology of Franciscan metabasites along jadeite-glaucophane type facies series, Cazadero, California. J Petrol 29:1–37

    Google Scholar 

  • Matsushita M, Hiramatsu F, Kobayashi N, Ozawa T, Yamazaki Y, Matsuyama T (2004) Colony formation in bacteria: experiments and modelling. Biofilms 1:305–317. doi:10.1017/S1479050505001626

    Article  Google Scholar 

  • McKay DS, Clemett SJ, Thomas-Keprta KL, Wentworth SJ, Gibson EK, Robert F, Verchovsky AB, Pillinger CT, Rice T, Van Leer B (2006) Observation and analysis of in situ carbonaceous matter in Nakhla: part I. The 37th Lunar and Planetary Science Conference, Houston 2006, abstract 2251

    Google Scholar 

  • McKeegan KD, Kudryavtsev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology 35(7):591–594

    Article  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early earth and beyond. Astrobiology 7:10–26

    Article  Google Scholar 

  • McLoughlin N, Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, de Wit M, Van Kranendonk M (2008) Micro-Bioerosion in Volcanic Glass: extending the Ichnofossil Record to Archean basaltic crust. In: Wisshak M, Tapanila L (eds) Springer Verlag

    Google Scholar 

  • Melezhik VA, Sturt BA (1994) General geology and evolutionary history of the early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’Ponoy Greenstone Belt in the north-eastern Baltic Shield. Earth Sci Rev 36:205–241

    Article  Google Scholar 

  • Melezhik VA, Huhma H, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotope event. Geology 35(7):655–658

    Article  Google Scholar 

  • Mellor E (1922) Les lichen vitricole et la déterioration dex vitraux d’église: Thèse de dochert thesis, Sorbonne, Paris

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence of life on Earth before 3800 million years ago. Nature 384:55–59

    Article  Google Scholar 

  • Moorbath S (2005) Dating earliest life. Nature 434:155

    Article  Google Scholar 

  • Myers JS (2001) Protoliths of the 3.8-3.7 Ga Isua greenstone belt, West Greenland. Precamb Res 105:129–141

    Article  Google Scholar 

  • Nelson DR (2005) GSWA geochronology dataset, In: Compilation of geochronology data, June 2005 update. Western Australia Geological Survey, GSWA 178042

    Google Scholar 

  • Nicolas A, Boudier F, Meshi A (1999) Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania). J Geophys Res 104:15155–1517

    Article  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1090

    Article  Google Scholar 

  • Nutman AP (1986) The early Archaean to Proterozoic history of the Isukasia area, southern West Greenland. Grønlands Geol Unders Bull 154:80

    Google Scholar 

  • Ohnenstetter D, Ohnenstetter M, Rocci G (1976) Etude des metamorphismes successife des cumulates ophiolitiques de Corse. Bull Soc Geol France XVIII:115–134

    Google Scholar 

  • Palmer HC, Tazaki K, Fyfe WS, Zhou Z (1988) Precambrian glass. Geology 16:221–224

    Article  Google Scholar 

  • Panayiotou A (ed) (1980) Ophiolites. Proceedings of the International ophiolite Symposium, Cyprus 1979. Cyprus Geological Survey Department, pp 781

    Google Scholar 

  • Parson I, Hawkins J, Allan J, et al. (1992) Proc. ODP, Init. Repts, 135. (U. S. Government Printing Office), Washington

    Google Scholar 

  • Paul A, Zaman MS (1978) The relative influences of Al_2O_3 and Fe_2O_3 on the chemical durability of silicate glasses at different pH values. J Mat Sci 13:1499–1502

    Article  Google Scholar 

  • Peacock MA (1926) The petrology of Iceland. Part I, The basic tuffs. Trans Roy Soc Edinburgh 55:51–76

    Google Scholar 

  • Pedersen K (1997). Microbial life in deep granitic rocks. FEMS Microbiol Rev 20:399–414

    Article  Google Scholar 

  • Pedersen K, Ekendahl S, Tullborg E-L, Furnes H, Thorseth IH, Tumyr O (1997) Evidence of ancient life at 207 m depth in a granitic aquifer. Geology 25:827–830

    Article  Google Scholar 

  • Peltonen P, Kontinen A, Huhma H (1996) Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, Northeastern Finland. J Petrol 37:1359–1383

    Article  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,250-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  Google Scholar 

  • Robinson PT, Flower MFJ, Swanson DA, Staudigel H (1979) Lithology and eruptive stratigraphy of Cretaceous oceanic crust, western Atlantic Ocean. In: Donelly T, Francheteau J, Bryan W, Robinson P, Flower M, Salisbury M. et al (eds) Init. Repts. DSDP, LI, LII, LIII. (U. S. Government Printing Office), Washington

    Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  Google Scholar 

  • Rosing MT, Rose NM, Bridgwater D, Thomsen HS (1996) Earliest part of Earth’s stratigraphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24:43–46

    Article  Google Scholar 

  • Ross KA, Fisher RV (1986) Biogenic grooving on glass shards. Geology 14:571–573

    Article  Google Scholar 

  • Santelli CM, Bach W, Edwards KJ (2006). Microorganisms and the weathering of basalt at the seafloor. Geochim Cosmochim Acta 70 (issue 18) A556 (Goldschmidt Conference Abstracts) doi:10.1016/j.gea.2006.06.1027

    Google Scholar 

  • Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precamb Res 106:117–134

    Article  Google Scholar 

  • Schiffman P, Williams AE, Evarts RC (1984) Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California. Earth Planet Sci Lett 70:207–220

    Article  Google Scholar 

  • Schiffman P, Evarts RCE, Williams AE, Pickthorn WJ (1991) Hydrothermal metamorphism in oceanic crust from the Coast Ranges ophiolite of California:fluid-rock interaction in a rifted island arc. In: Peters TJ., Nicolas A, Coleman RG (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer Academic Publishers, Dordrecht, pp 399–425

    Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Fendelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–64

    Article  Google Scholar 

  • Schmincke H-U, Bednarz U (1990) Pillow, sheet flow and breccia flow volcanoes and volcano-tectonic hydrothermal cycles in the Extrusive Series of the northeastern Troodos ophiolite (Cyprus). In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites Oceanic Crustal Analogues, Proceedings of the Symposium “Troodos 1987”. The Geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp 185–206

    Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 Billion to 3.5 Billion-Year-Old) Microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  Google Scholar 

  • Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient Fungal Life in North Pacific Eocene Ocenaic Crust. Geomicrobiol J 21:241–246

    Article  Google Scholar 

  • Shallo M (1995) Volcanics and sheeted dykes of the Albanian SSZ ophiolite. Buletini i Shkencave Gjeologjike 91:99–118

    Google Scholar 

  • Shervais JW, Hanan BB (1989) Jurassic volcanic glass from the Stonyford volcanic complex, Franciscan assemblage, northern California Coast Ranges. Geology 17:510–514

    Article  Google Scholar 

  • Simonetti A, Heaman LM, Chacko T, Banerjee NR (2006) In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS. Internat J Mass Spectrometry 253:87–97

    Article  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216

    Article  Google Scholar 

  • Smolkin VF, Bayanova TB, Fedotov Zh A (2003) Ore-bearing mafic-ultramafic rocks of the Pechenga-Allarechka area, Kola region: isotopic dating. In: Proceedings of the II Russian Conference on Isotope Geochemistry, St. Petersburg, pp 467–470 (in Russian)

    Google Scholar 

  • Staudigel H, Chastain RA, Yayanos A, Bourcier R (1995) Biologically mediated dissolution of glass. Chem Geol 126:119–135

    Article  Google Scholar 

  • Staudigel H, Yayanos A, Chastain R, Davies G, Verdurmen EATh, Schiffman P, Bourcier R, De Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244

    Article  Google Scholar 

  • Staudigel H, Furnes H (2004) Microbial mediation of oceanic crust alteration. In: Davis E, Elderfield H (eds) Hydrology of the Oceanic Lithosphere. Cambride University Press, pp 608–626

    Google Scholar 

  • Staudigel H, Furnes H, Kelley K, Plank T, Muehlenbachs K, Tebo B, Yayanos A (2004) The Oceanic Crust as a Bioreactor. In: AGU Monograph 144. Deep Subsurface Biosphere at Mid-Ocean Ridges pp 325–341

    Google Scholar 

  • Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and Volcanos: A tale from the Oceans, Ophiolites and Greenstone Belts. GSA Today 16(10). doi:10.1130/GSAT01610A.1

    Google Scholar 

  • Stetter KO, Fiala G, Huber G, Segerer A (1990) Hypothermophilic microorganisms. FEMS Microbiol Rev 75:117–124

    Article  Google Scholar 

  • Storrie-Lombardi MC, Fisk MR (2004) Elemental abundance distributions in suboceanic basalt glass: Evidence of biogenic alteration. Geochem Geophys Geosyst 5(10). doi:10.1029/2004GC000755

    Google Scholar 

  • Stroncik N, Schmincke H-U (2001) Evolution of palagonite: Crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2(7). doi:10.1029/2000GC000102

    Google Scholar 

  • Swanson SE, Schiffman P (1979) Textural evolution and metamorphism of pillow basalts from the Franciscan Complex, western Marin County, California. Contrib Mineral Petrol 69:291–299

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Subducting oceanic crust: The source of deep diamonds. Geology 33:565–568

    Article  Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-Oxidizing bacteria isolated from submarine Basalts at Loihi Seamount. J Geomicrobiol 22:127–139

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995a) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995b) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Keldysh-98 Scientific party (2001) Diversity of life in ocean floor basalts. Earth Planet Sci Lett 194:31–37

    Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0–30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247

    Article  Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett162:165–176

    Article  Google Scholar 

  • Ueno Y, Maruyama S, Isozaki Y, Yurimoto H (2001) Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry, In: Nakashima S, Maruyama S, Brack A, Windley BF (eds) Geochemistry and the origin of life. Universal Academy Press Inc, Tokyo, pp 203–236

    Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci Rev 74:197–240

    Article  Google Scholar 

  • Van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara craton, Australia. Geochemistry: Exploration Environment Analysis 4:253–278

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DN, Pike G (2002) Geology and tectonic evolution of the Archaean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97(4):695–732

    Article  Google Scholar 

  • Van Kranendonk MJ, Collins WJ, Hickman A, Pawley MJ (2004) Critical tests of vertical vs. horizontal tectonic models for the Archean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precamb Res 131:173–211

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Champion DC (2007) Review: secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of Pilbara Craton, Australia. Terra Nova 19:1–39

    Article  Google Scholar 

  • Wakabayashi J (1992) Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California. J Geol 100:19–40

    Google Scholar 

  • Wakabayashi J (1999) The Franciscan Complex, San Francisco Bay Area: A record of subduction complex processes. In: Wagner DL, Graham SA (eds) Geologic Field Trips in Northern California. California Division of Mines Special Publication 119:1–21

    Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites, 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445

    Article  Google Scholar 

  • Walton AW, Schiffman P (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis. Geochem Geophys Geosyst 4(5). Doi: 10.1029/2002GC000368

    Google Scholar 

  • Walton AW, Schiffman P, Macperson GL (2005) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite. Geochem Geophys Geosyst 6(9). doi: 10.1029/2004GC000903

    Google Scholar 

  • Wijbrans JR, McDougall I (1987) On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the 40Ar/39Ar age spectrum technique. Earth Planet Sci Lett 84:226–242

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gya ago. Nature 409:175–178

    Article  Google Scholar 

  • Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, and Bonch-Osmolovskaya EA (2007) Thermincola ferriacetica sp nov, a new anaerobic, thermophilic, faculatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7

    Article  Google Scholar 

  • Zhai MG, Yan YH, Lu WJ, Zhou JB (1985) Geochemistry and evolution of the Qingyuan Archean granite-greenstone terrain, N. China. Precamb Res 27:37–62

    Article  Google Scholar 

  • Zhao G, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precamb Res 107:45–73

    Article  Google Scholar 

  • Zhang Z, Goloubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic Stromatolites, Hebei China. Acta Micropaleontol Sin 4:1–12

    Google Scholar 

  • Zhou GC, Wilde SA, Cawood PA, Lu LZ (1998) Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev 40:706–721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Furnes, H. et al. (2008). Oceanic Pillow Lavas and Hyaloclastites as Habitats for Microbial Life Through Time – A Review. In: Dilek, Y., Furnes, H., Muehlenbachs, K. (eds) Links Between Geological Processes, Microbial Activities&Evolution of Life. Modern Approaches in Solid Earth Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8306-8_1

Download citation

Publish with us

Policies and ethics