Skip to main content
  • 4160 Accesses

The internal ESD protection requires the placement of adequate on-chip protection devices on the I/O and on the power supply pins to reliably bypass the ESD energy before it can damage the sensitive circuits. The onchip protection scheme should have an explicit and robust path for the ESD currents to flow between any pair of pins. In general, pad protection networks shunt I/O pins to the ground or VDD bus under stress events. For each input pin, a dedicated protection network, that is completely passive under normal operating conditions, has to be added. For each output pin, the ESD protection level is determined by the intrinsic robustness of the output buffer transistors plus that of the dedicated protection devices. A good protection element should minimize the nominal performance and/or voltage degradation to the I/O circuit due to its insertion and provide a low-impedance shunt path for the ESD current. The protection element must be capable of handling multiple ESD events without itself being destroyed. It should also not interfere with the I/O circuit during its normal operation. Hence, a perfect protection device should have the following characteristic:

  • Very low on-resistance

  • Triggering voltage should be above the worst case operating supply voltage (VDD + 10%)

  • Almost instantaneous turn-on time

  • Very high energy handling capability

  • Only trigger during ESD events, not during normal operation

  • Very low parasitics to minimize performance degradation of I/O circuit

  • Consumes small area

Very low on-resistance allows it to shunt large amount of current with no voltage rise from an ohmic voltage drop. It is clear that a real ESD protecttion device can not have all of these characteristics, but these criteria provide a list of optimizations and compromises to be struck when the protection circuit is designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-B. Huang and G. Wang, “ESD protection design for advanced CMOS,” Proc. of SPIE, vol. 4600, pp. 123–131, 2001.

    Article  Google Scholar 

  2. R. Merrill and E. Issaq, “ESD design methodology,” EOS/ESD Symposium, pp. 233 237, 1993.

    Google Scholar 

  3. J. E. Vinson and J. J. Liou, “Electrostatic discharge in semiconductor devices: protection techniques,” Proc. of the IEEE, vol. 88, No. 12, pp. 1878–1900, 2000.

    Article  Google Scholar 

  4. H. Gossner, “ESD protection for the deep sub micron regime - a challenge for design methodology,” Proc. of the Int. Conf. on VLSI Design (VLSID), pp. 809–818, 2004.

    Google Scholar 

  5. L. Lee, Y. Huh, P. Bendix, S.-M. Kang, “Understanding and addressing the noise induced by electrostatic discharge in multiple power supply systems,” Proc. of the Int. Conf. on Computer Design (ICCD), pp. 406–411, 2001.

    Google Scholar 

  6. M.-D. Ker and H.-H. Chang, “Whole-chip ESD protection strategy for CMOS IC’s with multiple mixed-voltage power pins,” Proc. of the Int. Symp. on VLSI Tech., Systems, and Applications, pp. 298–301, 1999.

    Google Scholar 

  7. M.-D. Ker and H. C. Jiang, “Whole-chip ESD protection strategy for CMOS integrated circuits in nanotechnology,” Proc. of the IEEE Conf. on Nanotechnology, pp. 325–330, 2001.

    Google Scholar 

  8. M.-D. Ker, H.-H. Chang, and T.-Y. Chen, “ESD buses for whole-chip ESD protection,” Proc. of the Int. Symp. on Circuits and Systems (ISCAS), pp. 545–548, 1999.

    Google Scholar 

  9. J. W. Miller, G. B. Hall, A. Krasin, M. Stockinger, M. D. Akers, and V. G. Kamat, “Electrostatic discharge protection circuitry and method of operation,” US Patent Application, No. 2004/0027742A1, 2004.

    Google Scholar 

  10. C. A. Torres, J. W. Miller, M. Stockinger, M. D. Akers, M. G. Khazhinsky, and J. C. Weldon, “Modular, portable, and easy simulated ESD protection networks for advanced CMOS technologies,” Microelectronics Reliability, vol. 42, No. 6, pp. 873–885, 2002.

    Article  Google Scholar 

  11. M. Stockinger and J. W. Miller, “Electrostatic discharge protection circuit and method of operation,” US Patent Application, No. 2005/007819A1, 2005.

    Google Scholar 

  12. M. Stockinger, J. W. Miller, M. G. Khazhinsky, C. A. Torres, J. C. Weldon, B. D. Preble, M. J. Bayer, M. Afkers, and V. G. Kamat, “Advanced rail clamp networks for ESD protection,” Microelectronics Reliability, vol. 45, No. 2, pp. 211–222, 2005.

    Article  Google Scholar 

  13. K. Esmark, W. Stadler, M. Wendel, H. Gobner, X. Guggenmos, and W. Fichner, “Advanced 2D/3D ESD device simulation - a powerful tool used in a pre-Si phase,” EOS/ESD Symposium, pp. 420–429, 2000.

    Google Scholar 

  14. H. Feng, G. Chen, R. Zhan, Q. Wu, X. Guan, H. Xie, A. Z. H. Wang, and R. Gafiteanu, “A mixed-mode ESD protection circuit simulation-design methodology,” IEEE J. of Solid-State Cir., vol. 38, No. 6, pp. 995–1006, 2003.

    Article  Google Scholar 

  15. K. Esmark, H. Gossner, and W. Stadler, Advanced Simulation Methods for ESD Protection Development, Elsevier, Oxford, 2003.

    Google Scholar 

  16. SEQUOIA Design Systems Inc., SEQUOIA News, vol. 4, No. 1, 2005. http://www.sequoiadesignsystems.com/

  17. O. Semenov, H. Sarbishaei, V. Axelrad, and M. Sachdev, “Novel gate and substrate triggering techniques for deep sub-micron ESD protection devices,” Microelectronics Journal, vol. 37, No. 6, pp. 526–533, 2006.

    Article  Google Scholar 

  18. K. Iniewski, V. Axelrad, A. Shibkov, A. Balasinski, S. Magierowski, R. Dlugosz, and A. Dabrowski, “3.125 Gb/s power efficient line driver with 2-level pre-emphasis and 2 kV HBM ESD protection,” Proc. of the Int. Symp. on Circuits and Systems (ISCAS), vol. 5, pp. 5071–5074, 2005.

    Google Scholar 

  19. SEQUOIA Design Systems Inc., http://www.sequoiadesignsystems.com/

  20. SEQUOIA Design Systems Inc., SEQUOIA News, vol. 1, No. 2, 2002. http://www.sequoiadesignsystems.com/

  21. SEMATECH, “Test structures for benchmarking the electrostatic discharge (ESD) robustness of CMOS technologies,” Technology Transfer 98013452A-TR, 1998.

    Google Scholar 

  22. V. Vassilev, S. Thijs, P. L. Segura, P. Wambacq, P. Leroux, G. Groeseneken, M. I. Natarajan, H. E. Maes, and M. Steyaert, “ESD-RF co-design methodology for the state of the art RF-CMOS blocks,” Microelectronics Reliability, vol. 45, No. 2, pp. 255268, 2005.

    Article  Google Scholar 

  23. D. Linten, S. Thijs, M. I. Natarajan, P. Wamback, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere, “A 5-GHz fully integrated ESD-protected lownoise amplifier in 90-nm RF CMOS,” IEEE J. of Solid-State Cir., vol. 40, No. 7, pp. 1434–1442, 2005.

    Article  Google Scholar 

  24. P. Leroux, V. Vassilev, M. Steyaert, and H. Maes, “High ESD performance, low power CMOS LNA for GPS applications,” Journal of Electrostatics, vol. 59, No. 3–4, pp. 179192, 2003.

    Google Scholar 

  25. N. Maene, J. Vandenbroeck, and K. Allert, “On-chip electrostatic discharge protections in advanced CMOS technologies,” Microelectronics Reliability, vol. 32, No. 11,

    Google Scholar 

  26. A. Wang, “Recent developments in ESD protection for RF ICs,” Design of Automation Conf., pp. 171–178, 2003.

    Google Scholar 

  27. A. Wang and C.-H. Tsay, “On a dual-polarity on-chip electrostatic discharge protection structure,” IEEE Trans. on Electron Devices, vol. 48, No. 5, pp. 978–984, 2001.

    Article  Google Scholar 

  28. R. A. Ashton, “Transmission line pulse measurements: a tool for developing ESD robust integrated circuits,” Proc. of the Int. Conf. on Microelectronic Test Structures, vol. 17, pp. 1–6, 2004.

    Google Scholar 

  29. J. Barth, J. Richner, L. Henry, and M. Kelly, “Real HBM & MM - The dV/dt threat,” EOS/ESD Symposium, pp. 179–187, 2003.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2008). Circuit Design Concepts for ESD Protection. In: ESD Protection Device and Circuit Design for Advanced CMOS Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8301-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8301-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8300-6

  • Online ISBN: 978-1-4020-8301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics