Skip to main content
  • 3343 Accesses

As discussed in Chapter 2, ESD is a very high current event. Therefore, ESD protection circuits should be able to handle a large amount of current without being destroyed. A number of semiconductor devices can be used to safely sink (source) this current; hence can be used as ESD protection circuit. In this chapter, some of the most important devices that are used in CMOS ESD protection circuits are discussed. Unlike conventional MOS transistors, the ability to carry large current is the most important design attribute of these devises.

Based on the shape of the I-V characteristic of semiconductor devices, they are divided into two main categories: non-snapback devices and snapback devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Sze, Semiconductor devices physics and technology, Wiley, New York, 2002.

    Google Scholar 

  2. J. W. Miller, “Application and process dependent ESD design strategy,” Tutorial in EOS/ESD Symposium, 2003.

    Google Scholar 

  3. E. Rosenbaum, S. Hyvonen, “On-chip ESD protection for RF I/Os: devices, circuits and models,” IEEE Int. Symp. Cir. and Sys., pp. 1202–1205, 2005.

    Google Scholar 

  4. Y. Blecher and R. Fried, “Zener substrate triggering for CMOS ESD protection devices,” Electronic Letters, vol. 32, No. 22, pp. 2102–2103, 1996.

    Article  Google Scholar 

  5. Y. Tsividis, Operation and modeling of the MOS transistor, Oxford University Press, New York, 2006.

    Google Scholar 

  6. L. Luh, J. Choma, and J. Draper, “A zener-diode-activated ESD protection circuit for submicron CMOS processes,” IEEE Int. Symp. Cir. and Sys., pp. 65–68, 2000.

    Google Scholar 

  7. C. Y. Chang and M. D. Ker, “On-chip ESD protection design for GHz RF integrated circuits by using polysilicon diodes in sub-quarter-micron CMOS process,” IEEE Int. Symp. VLSI Tech. Sys. App., pp. 240–243, 2001.

    Google Scholar 

  8. G. Chen, et al., “RF characterization of ESD protection structures,” IEEE RF Int. Cir. Symp., pp. 379–382, 2004.

    Google Scholar 

  9. F. C. Hsu, P. K. Ko, S. Tam, C. Hu, and R. S. Muller, “An analytical breakdown model for short-channel MOSFET’s,” IEEE Trans. on Electron Dev., vol. ED-29, No. 11, 1982.

    Google Scholar 

  10. D. Krakauer and K. Mistry, “ESD protection in a 3.3 V sub-micron silicided CMOS technology,” Proc. EOS/ESD Symposium, pp. 250–257, 1992.

    Google Scholar 

  11. G. Notermans, “On the use of n-well resistors for uniform triggering of ESD protection elements,” Proc. EOS/ESD Symposium, pp. 221–229, 1997.

    Google Scholar 

  12. K. G. Verhaege and C. Russ, “Wafer cost reduction through design of high performance fully silicided ESD devices,” Proc. EOS/ESD Symposium, pp. 18–28, 2000.

    Google Scholar 

  13. C. Duvvury and R. Rountree, “A synthesis of ESD input protection circuit,” Proc. EOS/ESD Symposium, pp. 69–84, 1991.

    Google Scholar 

  14. A. Chatterjee and T. Polgreen, “A low-voltage triggering SCR for on-chip ESD protection at output and input pads,” IEEE Elec. Dev. Letters, pp. 21–22, 1991.

    Google Scholar 

  15. A. Z. H. Wang and C. H. Tsay, “On a dual-polarity on-chip electrostatic discharge protection structure,” IEEE Trans. Elec. Dev., vol. 48, No. 5, pp. 978–984, 2001.

    Article  Google Scholar 

  16. H. Feng, K. Gong, and A. Z. Wang, “A comparison study of ESD protection for RFIC’s: performance vs parasitics,” IEEE RF Int. Cir. Symp., pp. 235–238, 2000.

    Google Scholar 

  17. H. Gossner, “ESD protection for the deep sub-micron regime - a challenge for design methodology,” Proc Int. Conf VLSI Des., pp. 809–818, 2004.

    Google Scholar 

  18. R. Merrill and E. Issaq, “ESD design methodology,” Proc. EOS/ESD Symposium, pp. 233–237, 1993.

    Google Scholar 

  19. O. Semenov, H. Sarbishaei, V. Axelrad, and M. Sachdev, “Novel gate and substrate triggering techniques for deep submicron ESD protection devices,” Microelectronics Journal, vol. 37, No. 6, pp. 526–533, 2006.

    Article  Google Scholar 

  20. T. Y. Chen and M. D. Ker, “Investigation of the gate-driven effect and substrate triggered effect on ESD robustness of CMOS devices,” IEEE Trans. on Dev. Materials Reliability, vol. 1, No. 4, pp. 190–203, 2002.

    Article  Google Scholar 

  21. M. D. Ker, T. Y. Chen, and C. Y. Wu, “ESD protection design in a 0.18 μm silicide CMOS technology by using a substrate-triggered technique,” IEEE Int. Symp. Cir. Sys., pp. 754–757, 2001.

    Google Scholar 

  22. H. Sarbishaei, O. Semenov, and M. Sachdev, “Optimizing circuit performance and ESD protection for high-speed differential I/Os,” submitted to Custom Int. Cir. Conf., 2007.

    Google Scholar 

  23. M. Sawant, et al., “Post programming burn in (PPBI) for RT54SX-S and A54SX-A ACTEL FPGAs,” http://www.actel.com/products/aero/ppbi_rev5minal.pdf

  24. C. Y. Chiang, “Latch-up at RAM control circuitry”, Proc. of IPFA, pp. 250–253, 1997.

    Google Scholar 

  25. M. D. Ker and H. H. Chang, “How to safely apply the LVTSCR for CMOS whole-chip ESD protection without being accidentally triggered on,” Proc. EOS/ESD Symposium, pp. 72–85, 1998.

    Google Scholar 

  26. M. P. J. Mergens, C. C. Russ, K. G. Verhaege, J. Armer, P. C. Jozwaik, and R. Mohn, “High holding current SCRs (HHI-SCR) for ESD protection and latch-up immune IC operation,” EOS/ESD Symposium, paper 1A3, 2002.

    Google Scholar 

  27. F. S. Shoucair, “High-temperature latchup characteristics in VLSI CMOS circuits,” IEEE Trans. on Electron Dev., vol. 35, No. 12, pp. 2424–2426, 1988.

    Article  Google Scholar 

  28. O. Semenov, H. Sarbishaei, and M. Sachdev, “Analysis and design of LVTSCR-based EOS/ESD protection circuits for burn-in environment,” Proc. of the Int. Symp. Quality Electron Design, pp. 427–432, 2005.

    Google Scholar 

  29. O. Semenov, et al., “Leakage current in sub-quarter micron MOSFET: a perspective on stresses delta IDDQ testing,” Journal of Electronic Testing: Theory and Application, vol. 19, No. 3, pp. 341–352, 2003.

    Article  Google Scholar 

  30. A. Amerasekera and C. Duvvury, “The impact of technology scaling on ESD robustness and protection circuit design,” IEEE Trans.on Component, Packaging and Manufacturing Tech., Part A, vol. 18, No. 2, pp. 314–320, 1995.

    Article  Google Scholar 

  31. C. Meneghesso, S. Santirosi, E. Novarini, C. Contiero, and E. Zanoni, “ESD robustness of smart-power protection structures evaluated by means of HBM and TLP tests,” IEEE IRPS, pp. 270–275, 2000.

    Google Scholar 

  32. D. L. Lin, “ESD sensitivity and VLSI technology trends: thermal breakdown and dielectric breakdown,” Proc. EOS/ESD Symposium, pp. 73–81, 1993.

    Google Scholar 

  33. T. Wadano, “Study of the soft leakage induced ESD on LDD transistor,” Micro electronics Reliability, vol. 36, No. 11/12, pp. 1707–1710, 1996.

    Google Scholar 

  34. S. H. Voldman, “The impact of technology scaling on ESD robustness of aluminum and copper interconnects in advanced semiconductor technologies,” IEEE Trans. on Component, Packaging and Manufacturing Tech., Part C, vol. 21, No. 4, pp. 265–277, 1998.

    Article  Google Scholar 

  35. K. Murakami, K. Takita, and K. Masuda, “Measurement of lattice temperature during pulsed laser-annealing by time-dependent optical reflectivity,” Japanese Journal of Applied Physics, vol. 20, No. 12, pp. L867–L870, 1981.

    Article  Google Scholar 

  36. I. P. Herman, “Real time optical thermometry during semiconductor processing,” IEEE J. on Selected Topics in Quantum Electron., vol. 1, No. 4, pp. 1047–1053, 1995.

    Article  Google Scholar 

  37. C. Furbock, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Gossner, and W. Werener, “Backside laser probe characterization of thermal effects during high current stress in smart power ESD protection devices,” Proc. of IEDM, pp. 691–694, 1998.

    Google Scholar 

  38. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Wiley, New York, 2001.

    Google Scholar 

  39. M. D. Ker and K. C. Hsu, “Latchup-free ESD protection design with complementary substrate-triggered SCR devices,” IEEE J. Solid State Cir., vol. 38, No. 8, pp. 13801392, 2003.

    Google Scholar 

  40. P. A. Juliano and E. Rosenbaum, “A novel SCR macromodel for ESD circuit simulation,” Int. Elec. Dev. Meeting, pp. 14.3.1–14.3.4, 2001.

    Google Scholar 

  41. M. D. Ker and H. K Chun, “Native-NMOS-triggered SCR (NANSCR) for ESD protection in 0.13 μm CMOS integrated circuits,” Int. Rel. Phys. Symp., pp. 381–386.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2008). ESD Devices for Input/Output Protection. In: ESD Protection Device and Circuit Design for Advanced CMOS Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8301-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8301-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8300-6

  • Online ISBN: 978-1-4020-8301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics