Skip to main content

Part of the book series: NATO Science for Peace and Security Series ((NAPSC))

The functioning of the soil as a vital system and the support on its biological productivity depends to a higher extent on the soil microflora activity. That is why in the assessing of anthropogenic soil pollution it is necessary to take into account the changes in the the size, composition and activity of the soil microbial community, variation in loss of the normal bands and the appearance of new bands compared with the unpolluted soil. There is not yet a commonly accepted system of bio-indication on soil pollution. As bioindicators are used pure cultures of microorganisms, sensitive to determined type of pollutant; the number and ratio of the main taxonomic and ecologic trophic groups of microorganisms; bacterial community tolerance; intensity of the microbiological processes – soil respiration, fixation of nitrogen, cellulose decay; soil enzyme activity and so on. With higher sensibility are distinguished the indexes, reflecting more narrowly the special processes, which are implemented by the limited number of microorganisms. The changes in soil microbial equilibrium can serve as an “early warning” for negative alterations in the soil conditions long before they could be detected by classical chemical methods and before they could become irreversible. The complex investigations on the soil biological activity should be conducted in assessing ecological risk of soil pollutants. The reliable microbiological indicator must be established and used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Асеves, M., Grace, C., Ansorena, J., Dendooven, L. & Brookes, P. (1999) Soil Microbial Biomass and Organic C in a Gradient of Zn Concentrations in Soils around a Mine Spoil Tip. Soil Biology and Biochemistry, 31(6), 867-876.

    Article  Google Scholar 

  • Alarcon, A., Delgadillo-Martines, J., Franko-Ramirez, A., Davies, F. T. & Ferrera-Cerrato, R. (2006) Influence of two polycyclic aromatic hydrocarbons on spore germination and phytoremediation potential of Gigaspora margarita - Edynochloa polystachya symbiosis in benzo[a]pyrene polluted substrate. Revista International Embiental, 22(1), 39-47.

    CAS  Google Scholar 

  • Balinova, A. (1998) Environmental risk from point sources of pesticides in soil. Agricultural Science, 4, 51-54.

    Google Scholar 

  • Bargett, R. & Saggta, S.(1994) Effect of Heavy Metal Contamination on the Short-term Decomposition of Labeled 14C Glucose in a Pasture Soil. Soil Biology and Biochemistry, 26(6), 727-733.

    Article  Google Scholar 

  • Blagodatskaya, Ye. V., Ananeva, N. D. & Miakshina, T. N. (1995) Characteristics of soil microbial community by the metabolic coefficient. Pochvovedenie (Russian Soil Science), 2, 205-210.

    Google Scholar 

  • Bollen, W. L. & Tu, C. M. (1971) Influence of endrin on soil microial population and their activity. Res. Paper, US Forest Service PNW-114, 4 pp.

    Google Scholar 

  • Braithwaite, B. M., Jane, A. & Swain, F. G. (1958) Effect of insecticides on sod sown sub clover. J. Aust. Inst. Agric. Sci., 24, 155-157.

    Google Scholar 

  • Callao, V. & Montoya, E. (1956) Action de certains insecticides sur la croissance d’azotobacter dans le sol. VI Cong. Int. Sci. Sol. Rapp. C, 327-329.

    Google Scholar 

  • Castro, I. (2000) Exotoxicological Effects of Heavy Metals in the Biolological Fixing of Nitrogen in Industrially Contaminated Soils. Silva-Lusitanaq 8(2), 165-194.

    Google Scholar 

  • Chander, K. & Brookes, P. (1991) Microbial Biomass Dynamics during the Decompopsition of Glucose and Maize in Metal-contaminated and Non-contaminated Soils. Soil Biology and Biochemistry, 23(10), 917-925.

    Article  CAS  Google Scholar 

  • Chander, K. & Brookes, P. (1991a) Effect of Heavy Metals from Past Application of Sewage Sludge on Microbial Biomass and Organic Matter Accumulation in a Sandy Loam and Silty Loam. Soil Biology and Biochemistry, 23(10), 927-932.

    Article  Google Scholar 

  • Chandra, P. (1967) Effect of two chlorinated insecticides on soil microflora and nitrification process as influenced by different soil temperatute and textures. In: Progress in soil Biology, 320-330.

    Google Scholar 

  • Chen, H. M., Zheng, C. R., Wang, S. Q. & Tu, C. (2000) Combined pollution and pollution index of heavy metals in red soil. Pedosphere, 10(2), 117-124.

    CAS  Google Scholar 

  • Colpaert, J. & Assche, J.(1987) Heavy Metal Tolerance in Some Ectomycorhizal Fungi. Functional Ecology, 1, 415-421.

    Article  Google Scholar 

  • Colpaert, J. V., van Tichelen, K. K., Vangronsveld, J. (2000) Ectomycorrhizal fungi can protect their host trees against heavy metal toxicity. In: Proceedings of the InterCOST Workshop on Bioremediation, Sorrento, 15-18 November 2000, 72-74.

    Google Scholar 

  • Dahlin, S., Witter, E., Mart, A., Turnew, A. & Baath, E. (1997) Where is the Limit? Changes in the Microbilogical Properties of Agricultural Soils at Low Level of Metal Contamination. Soil Biology and Biochemistry, 22(9-10), 1405-1415.

    Article  Google Scholar 

  • Del Val, C., Barea, J. M. & Azcón-Aguilar, C. (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. 1: Appl Environ Microbiol. Feb; 65(2), 718-23.

    Google Scholar 

  • Donkova, R. & Petkova, D. (2003) Influence of lead on microbial activity of leached chernozem and light gray forest soil. Proceding Int. Scientific conference “50 Years University of Foresty. Session “Ecology and Environment protection”, 11-13.

    Google Scholar 

  • Donkova, R., Chanova, D., Petkova, D. & Markova, A. (1998) Influence of the herbicides alachlor and acetochlor on some properties of the strains Br. japonicum and their detoxication in the soil. Agricultural Science, 4, 55-56.

    Google Scholar 

  • Donkova, R. & Chanova, D. (2002) Influence of Escort herbicide on the Br. japonocum in relation with soil characteristics. Soil Science, Agrochemistry and Ecology, XXXVII, 1-3.

    Google Scholar 

  • Donkova, R. & Petkova, D. (2005) Influence of acetochlor on the microbial activity and its detoxication in the lead polluted soils. Proceedings National Conferencewith International Participattion: Management, Used and Protection of Soil Resources, 245-248.

    Google Scholar 

  • Donkova, R. (2006) Lead impact on the basic properties of Bradyrhizobium japonicum. Bul. J. of Agricultural science, 12(5), 683-689.

    Google Scholar 

  • Donkova, R. & Dinev, N. (2006) Microbiological Characteristic of soils in the area of non-ferrous metals factory, town of Plovdiv, Bulgaria. Eleventh Congress of the Microbiologists in Bulgaria,Varna, 2006.

    Google Scholar 

  • Donkova, R. (2007) Influence of Rilay on microbiological activity of lead polluted soils. Proceedings International conference 60-years Institute of Soil Science - Soil Science - base for sustainable agriculture and environment protection. 13-17 May 2007, Sofia, 572-575.

    Google Scholar 

  • Dusek, L. (1995) Activity of nitrifying populations in grass-land soil polluted by polychlorinated biphenils (PCPs). Plant and Soil, 176(2), 273-282.

    Article  CAS  Google Scholar 

  • Eno, C. F. (1957) Field accumulation of insecticide residues in soil. Exp. Sta. Rep. 142.

    Google Scholar 

  • Fletcher, D. W. & Bollen, W. B. (1954) The effect of aldrin on soil microorganisms and some of their activities related to soil fertility. Appl. Microbiology, 2, 349-354.

    CAS  Google Scholar 

  • French, N., Lichtenstain, E. P. & Thorne, G. (1959) Effect of some chlorinated hydrocarbon insecticides on nematode populations in soils. J. ecn. Ent, 52, 861-865.

    CAS  Google Scholar 

  • Gaur, A. C. & Pareek, R. P. (1971) Tolerance of nitrification to DDT. Indian Journal of Entomology, 33(3), 368-370.

    Google Scholar 

  • Gianfreda L. & Bollag J. M. (1996) Influence of natural and antropogenic factors on enzyme activity in soil. In: Stotzky, G. & Bollag J. M. Soil biochemistry. New York: Marcel Dekker, 9, 123-193.

    Google Scholar 

  • Insam H., Parkinson, D. & Domsch K. (1989) Influence of Macroclimate on Soil Microbial Biomass. Soil Biology and Biochemistry, 21, 211-221.

    Article  Google Scholar 

  • Insam H., Mitchell C. & Dormaar J. (1991) Relationship of Soil Microbial Biomass and Activity with Fertilization Practice and Crop Yield of Three Ultisoils. Soil Biology and Biochemistry, 23 (5), 459-464.

    Article  CAS  Google Scholar 

  • Hartenstein, R. C. (1960) The effect of DDT and malation upon forest soil microarthropods. J. eco. Ent., 53, 357-362.

    CAS  Google Scholar 

  • Hiroki, M. (1992) Effect of heavy metal contamination on soil microbial population. Soil. Sci. Plant. Nutr., 38(1), 141.

    CAS  Google Scholar 

  • Kaloyanova, N. & Kostov, O. (2004) Soilmicrobial characteristic and growth of lucerne at Cu contaminated soil. Soil Science and Ecology, 39(1), 26-31.

    Google Scholar 

  • Kaloyanova, N. (2007) Effect of cadmium contamination on the microbiological properties of two soils and the yield of Lucerne. Proceedings International conference 60-years Institute of Soil Science - Soil Science - base for sustainable agriculture and environment protection. 13-17 May 2007, Sofia, 581-584.

    Google Scholar 

  • Khan, M. & Scullion, J. (2000) Effect of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Applied Soil Ecology, 20, 145-155.

    Article  Google Scholar 

  • Ko, W. H. & Lockwood, J. L. (1968) Convertion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Can. J. Microbiol. 14, 1069-1073.

    Article  CAS  Google Scholar 

  • Ko, W. H. & Lockwood, J. L. (1968) Accumulation and concentration of chlorinated hydrocarbon pesticides by microorganisms in soil. Can. J. Microbiol. 14, 1075-1078.

    Article  CAS  Google Scholar 

  • Kuperman R. & Carreiro M. (1997) Soil Heavy Metal Concentrations, Microbial Biomass and Enzyme Activities in a Contaminated Grassland Ecosystem. Soil Biology and Biochemistry, 29 (2), 179-190.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri A. M. & Giller K. E. (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology and Biotechnology, 14(2), 94-104.

    Article  CAS  Google Scholar 

  • MacRae, I. C. & Vinckx, E. (1973) Effect of Lindane and DDT on population of protozoa in a garden soil. Soil Biol. Biochem., 5(2), 245-247.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. & Smreczak, B. (2002) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Soil Science and Land Reclamation Department, Institute of Soil Science and Plant Cultivation, ul Czartoryskich, Pulawy, Poland, 8, 24-100.

    Google Scholar 

  • Martin J. P., Harding, R. B. & Cannell, G. H. et al. (1959) Influence of fine annual field application of organic insecticides on soil biologycal and physical properties. Soil Sci, 87, 334-338.

    CAS  Google Scholar 

  • Martyniuk, S., Wozniakowska A., Tujka A. & Martyniuk M. (2003) Microbial and biochemical characteristics of two soils treated with heavy metals and a reclaiming material. Pamietnik-Pulawski, 133, 115-121.

    Google Scholar 

  • Masefield, G. B. (1955) Condition affecting the nodulation of leguminous crop in the field. Emp. J. exp. Agric., 23, 17-24.

    Google Scholar 

  • Moreno, J. L., García, C. & Hernández, T. (2003) Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. European Journal of Soil Science 54(2), 377-386.

    Article  CAS  Google Scholar 

  • Mutsumura, F., Boush, G. M. & Tai, A. (1968) Breakdown of dieldrin in the soil by a microorganisms. Nature. L., 219, 965-967.

    Article  Google Scholar 

  • Nannipieri, P. (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst C. E., Double, B. M., Gupta V. V. S. R., Grace P. R. (ed.). Soil biota management in sustainable farming systems. Melbourne: CSIRO, 238-244.

    Google Scholar 

  • Petkova, G. & Donkova, R. (2006) Cadmium influence on microbiological activity of calcareous chrnozem. Eleventh Congress of the Microbiologists in Bulgaria, Varna’2006 (submitted for publication).

    Google Scholar 

  • Powlson, D., Brokes, P. & Christensen, B. (1987) Measurement of Soil Microbial Biomass Provides an Early Indicator of Changes in Total Organic Matter due to Straw Incorporation. Soil Biology and Biochemisty, 19(1), 159-164.

    Article  CAS  Google Scholar 

  • Salonius, P. O. (1972) Effect of DDT and fenitrothion on forest soil microflora. J. of Entomology, 65(4), 1089-1090.

    CAS  Google Scholar 

  • Simon, T. (1999) The effect of increasing rates of Ni and As on the growth of radish and soil microflora. Rostlinna-Vyroda-UZPI, 45 (9): 421-430.

    CAS  Google Scholar 

  • Shamiyen, N. B. & Johanson, R. F. (1973) Effect of heptachlor on number of bacteria, actinomycetes and fungi in soil, Soil Biol and Biochem., 5, 3, 309-314.

    Article  Google Scholar 

  • Shaw, W. M. (1960) Pesticides Effects in soils on nitrification and plant growth. Soil Sci., 90, 320-323.

    Article  CAS  Google Scholar 

  • Sheals, J. G. (1955) The effect of DDT and BHC on soil Collembola and Acarina. Soil Zoology, 241-252.

    Google Scholar 

  • Sheals, J. G. (1956) Soil population studies. Bull. ent. Res., 4, 803-822.

    Article  Google Scholar 

  • Shegunova, P., Teruze, K. & Atanasov, I. (2001) Priority organic pollutants in soils of Bulgaria. Assessment of the quality of contaninated soil and sites in Central and Eastern European Countries (CEEC) and New Independent States. Int. Workshop. Sept. - Oct. 3, Sofia, Bulgaria. Proceedings, 202-208.

    Google Scholar 

  • Smejkalova, M., Mikanova, O. & Borunka, L. (2003) Effect of Heavy Metal Concentrations on Biological Activity of Soil Microorganisms.Plant, Soil and Environment-UZPI, 49, 7, 321-326.

    Google Scholar 

  • Tate, K. R. (1974) Influence of four pesticide formulation on microbial processes in a New Zealand pasture soil. New Zealand J. of Agric. Res., 17, 1, 1-7.

    CAS  Google Scholar 

  • Tong, Z. & Sadowsky, M. J. (1994) A selective medium for the isolation and quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains from soils and inoculants. Appl. Environ Microbiol., 60: 581-586.

    CAS  Google Scholar 

  • Tyler G. (1981) Heavy Metals in Soil Biology and Biochemistry. In: Paul E., Ladd J. (eds.) Soil Biochemistry, vol. 5. Marcel-Dekker, New York, 371-414.

    Google Scholar 

  • Varshney, T. N. & Gaur, A. C. (1972) Effect of DDT and Sevin on soil fungi. Acta Microbiol. Acad. Scient. Hungaricae., 19, 2, 97-102.

    CAS  Google Scholar 

  • Wardle, D. & Parkinson D. (1990) Interactions between Microclimate Variables and the Soil Microbial Biomass. Biology and Fertility of Soils, 9, 273-280.

    Article  Google Scholar 

  • Weissenhorn, I., Merich, M. & Leyval, C. (1995) Bioavailability of Heavy Metals and Arbuscular Mycorhiza in Sewage-Sludge Amended Sandy Soil. Soil Biology and Biochemistry, 27, 287-296.

    Article  CAS  Google Scholar 

  • Wilkinson, A. T. S., Finlayson, D. G. & Morley, H. V. (1964) Toxic residues in soil 9 years after treatment with aldrin and heptachlor, Science, 143, 681-682.

    Article  CAS  Google Scholar 

  • Yagnow, G. & Haider, K. (1972) Evolution of 14CO2 from soil incubated with dieldrin-14C and the action of soil bacteria on labelled dieldrin. Soil Biol. Biochem., 4, 1, 43-49.

    Article  Google Scholar 

  • Zviagintsev, D., Kurakov, А., Umarov, М. & Z., Philip. (1997) Мicrobiological and biochemical indexes of polluted with lead Podsolic soil. Pochvovedenie (Russian Soil Science), 9: 1124-1131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Donkova, R., Kaloyanova, N. (2008). The Impact of Soil Pollutants on Soil Microbial Activity. In: Simeonov, L., Sargsyan, V. (eds) Soil Chemical Pollution, Risk Assessment, Remediation and Security. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8257-3_6

Download citation

Publish with us

Policies and ethics