Skip to main content

Hydrogeophysical Techniques for Site Characterization and Monitoring: Recent Advances in Ground-penetrating Radar

  • Conference paper
Soil Chemical Pollution, Risk Assessment, Remediation and Security

We introduce ground penetrating radar (GPR) basic principles and applications in environmental engineering, with emphasis on quantitative methods for soil water content estimation. The main limitations of these techniques are discussed. Then, we summarize our recent advances on the development and use of advanced off-ground GPR for shallow subsurface characterization. The proposed method is based on full-waveform forward and inverse modelling of the radar signal, thereby maximising inherently information retrieval capabilities from the radar measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • al Hagrey, S.A. and Müller, C., 2000. GPR study of pore water content and salinity in sand. Geophysical Prospecting, 48: 63-85.

    Google Scholar 

  • Alumbaugh, D., Chang, P., Paprocki, L., Brainard, J., Glass, R.J. and Rautman, C.A., 2002. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability. Water Resources Research, 38: 1309.

    Article  Google Scholar 

  • Annan, A.P., 2002. GPR - History, Trends, and Future Developments. Subsurface Sensing Technologies and Applications, 3(4): 253-270.

    Article  Google Scholar 

  • Annan, A.P., 2005. GPR methods for hydrogeological studies. In: Y.R.a.S.S. Hubbard (Editor), Hydrogeophysics, Springer, New York, pp. 532.

    Google Scholar 

  • Binley, A., Winship, P., Middleton, R., Pokar, M. and West, J., 2001. High-resolution char-acterization of vadose zone dynamics using cross-borehole radar. Water Resources Research, 37 (11): 2639-2652.

    Article  Google Scholar 

  • Boll, J., van Rijn, R.P.G., Weiler, K.W., Steenhuis, T.S., Daliparthy, J. and Herbert, S.J., 1996. Using ground penetrating radar to detect layers in a sandy field soil. Geoderma, 70: 117-132.

    Article  Google Scholar 

  • Bouma, J., Stoorvogel, J., van Alphen, B.J. and Booltink, H.W.G., 1999. Pedology, Precision Agriculture, and the Changing Paradigm of Agricultural Research. Soil Science Society of America Journal, 63: 1763-1768.

    CAS  Google Scholar 

  • Brewster, M.L. and Annan, A.P., 1994. Ground penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics, 59: 1211-1221.

    Article  Google Scholar 

  • Bristow, C.S., Bailey, S.D. and Lancaster, N., 2000. The sedimentary structure of linear sand dunes. Nature, 406(6791): 56-59.

    Article  CAS  Google Scholar 

  • Cai, J. and Mc-Mechan, G.A., 1995. Ray-based synthesis of bistatic ground penetrating radar profiles. Geophysics, 60: 87-96.

    Article  Google Scholar 

  • Cassiani, G. and Binley, A., 2005. Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints. Advances in Water Resources, 28 (5): 467-477.

    Article  CAS  Google Scholar 

  • Chanzy, A., Tarussov, A., Judge, A. and Bonn, F., 1996. Soil water content determination using digital ground penetrating radar. Soil Science Society of America Journal, 60: 1318-1326.

    CAS  Google Scholar 

  • Daniels, D.J., 2004. Ground Penetrating Radar, 2nd Edition. The Inst. Electrical Eng., London. Darayan, S., Liu, C., Shen, L.C. and Shattuck, D., 1998. Measurement of electrical properties of contaminated soils. Geophysical Prospecting, 46: 477-488.

    Google Scholar 

  • Davis, J.L. and Annan, A.P., 1989. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37: 531-551.

    Article  Google Scholar 

  • de Rosnay, P. et al., 2006. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sensing of Environment, 102(3-4): 377-389.

    Google Scholar 

  • Dobson, M.C. and Ulaby, F.T., 1986. Active microwave soil moisture research. IEEE Trans-actions on Geoscience and Remote Sensing, 24: 23-36.

    Article  Google Scholar 

  • Du, S. and Rummel, P., 1994. Reconnaissance studies of moisture in the subsurface with GPR. In: M.T.v.G.a.F.J.L.a.L. Wu (Editor), Proceedings of the Fifth International Conference on Ground Penetrating Radar, Waterloo cent. for Groundwater Res., Univ. of Waterloo, Waterloo, Ont., Canada, pp. 1241-1248.

    Google Scholar 

  • Famiglietti, J.S., Devereaux, J.A., Laymon, C.A., Tsegaye, T., Houser, P.R., Jackson, T.J., Graham, S.T., Rodell, M. and van Oevelen, P.J., 1999. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research, 35(6): 1839-1851.

    Article  CAS  Google Scholar 

  • Galagedara, L.W., Parkin, G.W. and Redman, J.D., 2003. An analysis of the GPR direct ground wave method for soil water content measurement. Hydrological Processes, 17: 3615-3628.

    Article  Google Scholar 

  • Galagedara, L.W., Parkin, G.W., Redman, J.D. and Endres, A.L., 2005a. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. Journal of Hydrology, 301: 182-197.

    Article  CAS  Google Scholar 

  • Galagedara, L.W., Redman, J.D., Parkin, G.W., Annan, A.P. and Endres, A.L., 2005b. Numerical modeling of GPR to determine the direct ground wave sampling depth. Vadose Zone Journal, 4: 1096-1106.

    Article  Google Scholar 

  • Garambois, S., Sénéchal, P. and Perroud, H., 2002. On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations. Journal of Hydrology, 259: 32-48.

    Article  Google Scholar 

  • Gentili, G.G. and Spagnolini, U., 2000. Electromagnetic inversion in monostatic ground penetrating radar: TEM horn calibration and application. IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1936-1946.

    Article  Google Scholar 

  • Gloaguen, E., Couteau, M., Marcotte, D. and Chapuis, R., 2001. Estimation of hydraulic conduc-tivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. Journal of Applied Geophysics, 47: 135-152.

    Article  Google Scholar 

  • Goodman, D., 1994. Ground penetrating radar simulation in engineering and archeology. Geophysics, 59: 224-232.

    Article  Google Scholar 

  • Greaves, R.J., Lesmes, D.P., Lee, J.M. and Toksov, M.N., 1996. Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics, 61: 683-695.

    Article  Google Scholar 

  • Grote, K., Hubbard, S.S. and Rubin, Y., 2003. Field-scale estimation of volumetric water content using GPR ground wave techniques. Water Resources Research, 39(11): 1321, doi:10.1029/2003WR002045.

    Article  Google Scholar 

  • Hubbard, S., Chen, J., Williams, K., Peterson, J. and Rubin, Y., 2005. Environmental and agricultural applications of GPR. In: S.L.a.A.G. Gorriti (Editor), Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, Delft University of Technology, Delft, The Netherlands, pp. 45-49.

    Google Scholar 

  • Hubbard, S.S., Rubin, Y. and Majer, E., 1997. Ground-penetrating-radar-assisted saturation and permeability estimation in bimodal systems. Water Resources Research, 33(5): 971-990.

    Article  Google Scholar 

  • Huisman, J.A., Hubbard, S.S., Redman, J.D. and Annan, A.P., 2003. Measuring soil water content with ground penetrating radar: A review. Vadose Zone Journal, 2: 476-491.

    Article  Google Scholar 

  • Huisman, J.A., Snepvangers, J.J.J.C., Bouten, W. and Heuvelink, G.B.M., 2002. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. Journal of Hydrology, 269: 194-207.

    Article  Google Scholar 

  • Huisman, J.A., Sperl, C., Bouten, W. and Verstraten, J.M., 2001. Soil water content measure-ments at different scales: accuracy of time domain reflectometry and ground penetrating radar. Journal of Hydrology, 245: 48-58.

    Article  Google Scholar 

  • Huyer, W. and Neumaier, A., 1999. Global optimization by multilevel coordinate search. Journal of Global Optimization, 14(4): 331-355.

    Article  Google Scholar 

  • Jackson, T.J., Schmugge, J. and Engman, E.T., 1996. Remote sensing applications to hydrology: soil moisture. Hydrological Sciences, 41(4): 517-530.

    Article  Google Scholar 

  • Kemna, A., Binley, A., Ramirez, A. and Daily, W., 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77(1-2): 11-18.

    Article  CAS  Google Scholar 

  • Kemna, A., Vanderborght, J., Kulessa, B. and Vereecken, H., 2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3-4): 125-146.

    Article  CAS  Google Scholar 

  • Kirchmann, H. and Thorvaldsson, G., 2000. Challenging targets for future agriculture. European Journal of Agronomy, 12: 145-161.

    Article  Google Scholar 

  • Knight, R., 2001. Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences, 29: 229-255.

    Article  CAS  Google Scholar 

  • Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A. and Gee, G., 2005. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research, 41: W11425, doi:10.1029/2005WR004237.

    Article  Google Scholar 

  • Kung, K.J.S. and Lu, Z.B., 1993. Using ground penetrating radar to detect layers of discontinuous dielectric constant. Soil Science Society of America Journal, 57: 335-340.

    Article  Google Scholar 

  • Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998. Convergence properties of the Nelder-Mead Simplex method in low dimensions. Siam Journal on Optimization, 9(1): 112-147.

    Article  Google Scholar 

  • Lambot, S., Antoine, M., van den Bosch, I., Slob, E.C. and Vanclooster, M., 2004a. Electro-magnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone Journal, 3(4): 1072-1081.

    Article  Google Scholar 

  • Lambot, S., Antoine, M., Vanclooster, M. and Slob, E.C., 2006a. Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties. Water Resources Research, 42: W03403, doi:10.1029/2005WR004416.

    Article  Google Scholar 

  • Lambot, S., Javaux, M., Hupet, F. and Vanclooster, M., 2002. A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties. Water Resources Research, 38(11): 1224, doi:10.1029/2001WR001224.

    Article  Google Scholar 

  • Lambot, S., Rhebergen, J., van den Bosch, I., Slob, E.C. and Vanclooster, M., 2004b. Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground pene-trating radar. Vadose Zone Journal, 3(4): 1063-1071.

    Article  CAS  Google Scholar 

  • Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Scheers, B. and Vanclooster, M., 2004c. Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain. Water Resources Research, 40: W04205, doi:10.1029/2003WR002095.

    Article  Google Scholar 

  • Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B. and Vanclooster, M., 2004d. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Transactions on Geoscience and Remote Sensing, 42: 2555-2568.

    Article  Google Scholar 

  • Lambot, S., Slob, E.C., Vanclooster, M. and Vereecken, H., 2006b. Closed loop GPR data inversion for soil hydraulic and electric property determination. Geophysical Research Letters, 33: L21405, doi:10.1029/2006GL027906.

    Article  Google Scholar 

  • Lambot, S., van den Bosch, I., Stockbroeckx, B., Druyts, P., Vanclooster, M. and Slob, E.C., 2005. Frequency dependence of the soil electromagnetic properties derived from ground-penetrating radar signal inversion. Subsurface Sensing Technologies and Applications, 6: 73-87.

    Article  Google Scholar 

  • Lambot, S., Weihermüller, L., Huisman, J.A., Vereecken, H., Vanclooster, M. and Slob, E.C., 2006c. Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resources Research, 42: W11403, doi:10.1029/2006WR005097.

    Article  Google Scholar 

  • Lazaro-Mancilla, O. and Gomez-Treviño, E., 2000. Ground penetrating radar in 1-D: an approach for the estimation of electrical conductivity, dielectric permittivity and magnetic permeability. Journal of Applied Geophysics, 43: 199-213.

    Article  Google Scholar 

  • Lesch, S.M., Herrero, J. and Rhoades, J.D., 1998. Monitoring for temporal changes in soil salinity using electromagnetic induction techniques. Soil Science Society of America Journal, 62: 232-242.

    Article  CAS  Google Scholar 

  • Linde, N., Binley, A., Tryggvason, A., Pedersen, L.B. and Révil, A., 2006. Improved hydro-geophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42: W12404, doi:10.1029/2006WR005131.

    Article  Google Scholar 

  • Lopera, O., Milisavljevic, N. and Lambot, S., 2007a. Clutter reduction in GPR measurements for detecting shallow buried landmines: a Colombian case study. Near Surface Geophysics, 5(1): 57-64.

    Google Scholar 

  • Lopera, O., Slob, E.C., Milisavljevic, N. and Lambot, S., 2007b. Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Transactions on Geoscience and Remote Sensing, 45(3): 707-717.

    Article  Google Scholar 

  • Lunt, I.A., Hubbard, S.S. and Rubin, Y., 2005. Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307(1-4): 254-269.

    Article  CAS  Google Scholar 

  • Mualem, Y. and Friedman, S.P., 1991. Theoretical predictions of electrical conductivity in saturated and unsaturated soil. Water Resources Research, 27: 2771-2777.

    Article  Google Scholar 

  • Nakashima, Y., Zhou, H. and Sato, M., 2001. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. Journal of Applied Geophysics, 47: 241-249.

    Article  Google Scholar 

  • Plug, W.J., Slob, E., Bruining, J. and Tirado, L.M.M., 2007. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media. Geophysics, 72(3): A41-A45.

    Article  Google Scholar 

  • Plug, W.J., Slob, E., van Turnhout, J. and Bruining, J., 2007. Capillary pressure as a unique function of electric permittivity and water saturation. Geophysical Research Letters, 34(13): 5.

    Article  CAS  Google Scholar 

  • Redman, J.D., Davis, J.L., Galagedara, L.W. and Parkin, G.W., 2002. Field studies of GPR air launched surface reflectivity measurements of soil water content. In: L. Steven Koppenjan and Hua (Editor), Proceedings of the Ninth International Conference on Ground Penetrating Radar, Santa Barbara, CA., USA, pp. SPIE 4758: 156-161.

    Article  Google Scholar 

  • Rhoades, J.D., Raats, P.A.C. and Prather, R.J., 1976. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal, 40: 651-655.

    Article  Google Scholar 

  • Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D. and Friedman, S.P., 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2: 444-475.

    Article  CAS  Google Scholar 

  • Rucker, D.F. and Ferre, T.P.A., 2005. Automated water content reconstruction of zero-offset borehole ground penetrating radar data using simulated annealing. Journal of Hydrology, 309 (1-4): 1-16.

    Article  Google Scholar 

  • Rucker, D.F. and Ferré, T.P.A., 2004. Parameter estimation for soil hydraulic properties using zero-offset borehole radar: Analytical method. Soil Science Society of America Journal, 68 (5): 1560-1567.

    Article  CAS  Google Scholar 

  • Sasaki, Y.,2001. Full3-D inversion of electromagnetic data on PC. Journal of Applied Geophysics, 46: 45-54.

    Article  Google Scholar 

  • Schmalholz, J., Stoffregen, H., Kemna, A. and Yaramanci, U., 2004. Imaging of water content distributions inside a lysimeter using GPR tomography. Vadose Zone Journal, 3: 1106-1115.

    Article  Google Scholar 

  • Seneviratne, S.I., Luthi, D., Litschi, M. and Schar, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108): 205-209.

    Article  CAS  Google Scholar 

  • Serbin, G. and Or, D., 2003. Near-surface water content measurements using horn antenna radar: methodology and overview. Vadose Zone Journal, 2: 500-510.

    Article  Google Scholar 

  • Serbin, G. and Or, D., 2004. Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE Transactions on Geoscience and Remote Sensing, 42: 1695-1705.

    Article  Google Scholar 

  • Slob, E.C. and Fokkema, J., 2002. Coupling effects of two electric dipoles on an interface. Radio Science, 37(5): 1073, doi:10.1029/2001RS2529.

    Article  Google Scholar 

  • Spagnolini, U., 1997. Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Transactions on Geoscience and Remote Sensing, 35: 454-463.

    Article  Google Scholar 

  • Stafford, J.V., 2000. Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76 (3): 267-275.

    Article  Google Scholar 

  • Sudduth, K.A., Drummond, S.T. and Kitchen, N.R., 2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31: 239-264.

    Article  Google Scholar 

  • Tabbagh, A., Camerlynck, C. and Cosenza, P., 2000. Numerical modeling for investigating the physical meaning of the relationship between relative dielectric permittivity and water content of soils. Water Resources Research, 36: 2771-2776.

    Article  CAS  Google Scholar 

  • Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898): 671-677.

    Article  CAS  Google Scholar 

  • Topp, G., Davis, J.L. and Annan, A.P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16: 574-582.

    Article  Google Scholar 

  • Tsoflias, G.P., Halihan, T. and Sharp, J.M., 2001. Monitoring pumping test response in a fractured aquifer using ground-penetrating radar. Water Resources Research, 37(5): 1221-1229.

    Article  Google Scholar 

  • van Overmeeren, R.A., Sariowan, S.V. and Gehrels, J.C., 1997. Ground penetrating radar for determining volumetric soil water content: results of comparative measurements at two test sites. Journal of Hydrology, 197: 316-338.

    Article  Google Scholar 

  • Vanderborght, J., Kemna, A., Hardelauf, H. and Vereecken, H., 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resources Research, 41(6): 23.

    Article  Google Scholar 

  • Vaughan, D.G., Corr, H.F.J., Doake, C.S.M. and Waddington, E.D., 1999. Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 398(6725): 323-326.

    Article  CAS  Google Scholar 

  • Vellidis, G., Smith, M.C., Thomas, D.L. and Asmussen, L.E., 1990. Detecting wetting front movement in a sandy soil with ground penetrating radar. Trans. ASAE, 33: 1867-1874.

    Google Scholar 

  • Weiler, K.W., Steenhuis, T.S., Boll, J. and Kung, K.J.S., 1998. Comparison of ground penetrating radar and time domain reflectometry as soil water sensors. Soil Science Society of America Journal, 62: 1237-1239.

    Article  CAS  Google Scholar 

  • Windsor, C., Capineri, L., Falorni, P., Matucci, S. and Borgioli, G., 2005. The estimation of buried pipe diameters using ground penetrating radar. Insight, 47(7): 394-399.

    Article  Google Scholar 

  • Yelf, R., 2004. Where is true time-zero? In: E.C.S.a.A.Y.a.J. Rhebergen (Editor), Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft University of Technology, Delft, The Netherlands, pp. 279-282.

    Google Scholar 

  • Yoder, R.E., Freeland, R.S., Ammons, J.T. and Leonard, L.L., 2001. Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. Journal of Applied Geophysics, 47: 251-259.

    Article  Google Scholar 

  • Zhang, N., Wang, M. and Wang, N., 2002. Precision agriculture: a worldwide overview. Computers and Electronics in Agriculture, 36: 113-132.

    Article  Google Scholar 

  • Zhou, C., Liu, L. and Lane, J.W., 2001. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials. Journal of Applied Geophysics, 47: 271-284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Lambot, S., Slob, E., Vanclooster, M., Huisman, J.A., Vereecken, H. (2008). Hydrogeophysical Techniques for Site Characterization and Monitoring: Recent Advances in Ground-penetrating Radar. In: Simeonov, L., Sargsyan, V. (eds) Soil Chemical Pollution, Risk Assessment, Remediation and Security. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8257-3_15

Download citation

Publish with us

Policies and ethics