Skip to main content
  • 926 Accesses

Abstract

During the past two decades, significant advancements have been made in the field of molecular ecology and epidemiology, resulting in accumulation of large amount of genomic data. Application of molecular techniques has been demonstrated to be essential for rapid, reliable and reproducible results for detection, identification and differentiation of microbial plant pathogens. The specificity of reactions of molecular techniques has been shown to be a clear advantage over conventional methods. Establishment of the identity of the microbial pathogen is the basic requirement of epidemiological investigations. Equally important is the possibility of quantification of pathogen(s) present in plants, air, soil and water by molecular techniques adding credibility to the conclusions arrived at. The effects of host plant, pathogen and environment on the incidence and spread of the diseases have been assessed by using molecular methods. The interactions between the pathogens, particularly viruses and their vectors has been studied in detail in some pathosystems. Molecular methods have opened up the possibility of having an insight into the disease development from different sources of infection which may or may not exhibit symptoms of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimitsu K, Peever TL, Timmer LW (2003) Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. Mol Plant Pathol 4:435–446

    Article  CAS  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  PubMed  CAS  Google Scholar 

  • Al-Naimi FA, Garrett FA, Bockus WW (2005) Competition, facilitation and niche differentiation in two foliar pathogens. Oecologia 143:449–457

    Article  PubMed  CAS  Google Scholar 

  • Ammar ED, Järlfors U, Pirone TP (1994) Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Phytopathology 84:1054–1059

    Article  Google Scholar 

  • Antonovics J (2003) Toward community genomics? Ecology 84:598–601

    Article  Google Scholar 

  • Aranda MA, Fraile A, Garcia-Arenal F (1993) Genetic variability and evolution of the satellite RNA of Cucumber mosaic virus during natural epidemics. J Virol 67:5896–5901

    PubMed  CAS  Google Scholar 

  • Armour SL, Mercher U, Pirone TP, Lyttle DG, Essember RC (1983) Helper component for aphid transmission encoded by region III of Cauliflower mosaic virus DNA. Virology 129:25–30

    Article  CAS  PubMed  Google Scholar 

  • Atreya CD, Atreya PL, Thornbury DW, Pirone TP (1992) Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation and symptom expression in infected tobacco plants. Virology 191:106–111

    Article  PubMed  CAS  Google Scholar 

  • Atreya CD, Pirone TP (1993) Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions and gene replacement on virulence and aphid transmissibility. Proc Natl Acad Sci USA 90:11919–11923

    Article  PubMed  CAS  Google Scholar 

  • Bateson MF, Henderson J, Chaleeprom W, Gibbs AJ, Dale JL (1994) Papaya ringspot virus: isolate variability and origin of PRSV type P in Australia. J Gen Virol 75:3547–3553

    PubMed  CAS  Google Scholar 

  • Bateson MF, Lines RE, Revill P, Challeprom W, Ha CC, Gibbs AJ Dale JL (2002) On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J Gen Virol 83:2575–2585

    PubMed  CAS  Google Scholar 

  • Bearchell SJ, Fraaije BA, Shaw MW, Fitt BDL (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc Natl Acad Sci USA 102:5438–5442

    Article  PubMed  CAS  Google Scholar 

  • Belin C, Schmitt C, Demangeat G, Komar V, Pinck L, Fuchs M (2001) Involvement of RNA2 encoded proteins in the specific transmission of Grapevine fan leaf virus by its nematode vector Xiphinema index. Virology 291:161–171

    Article  PubMed  CAS  Google Scholar 

  • Belin C, Schmitt C, Gaire F, Walter B, Demangeat G, Pinck L (1999) The nine C-terminal residues of the Grapevine fan leaf virus movement protein are critical for systemic virus spread. J Gen Virol 80:1347–1356

    PubMed  CAS  Google Scholar 

  • Bird J, Maramorosch K (1978) Viruses and virus diseases associated with whiteflies. Adv Virus Res 22:55–110

    PubMed  CAS  Google Scholar 

  • Bertolini E, Olmos A, Martinez MC, Gorris MT, Cambra M (2001) Single-step multiplex RT-PCR for simultaneous and colorimetric detection of six RNA viruses in olive trees. J Virol Methods 96:33–41

    Article  PubMed  CAS  Google Scholar 

  • Blain JP, Coutos-Thevenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defence mechanisms. Trends Plant Sci 7:293–296

    Article  Google Scholar 

  • Blanc S, Schmidt I, Vantard M, Scholthof HB, Kuhl G, Esperandieu P, Cerutti M, Louis C (1996) The aphid transmission factor of Cauliflower mosaic virus forms a stable complex with microtubules in both insect and plant cells. Proc Natl Acad Sci USA 93:15158–15163

    Article  PubMed  CAS  Google Scholar 

  • Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–187

    Article  PubMed  CAS  Google Scholar 

  • Briddon RW, Pinner MS, Stanley J, Markham PG (1990) Geminivirus coat protein gene replacement alters insect specificity. Virology 177:85–94

    Article  PubMed  CAS  Google Scholar 

  • Bull SE, Briddon RW, Serubombwe WS, Ngugi K, Markham PG, Stanley J (2006) Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J Gen Virol 87: 3053–3065

    Article  PubMed  CAS  Google Scholar 

  • Burrows ME, Caillaud MC, Smith DM, Benson EC, Gildow FE, Gray SM (2006) Genetic regulation of polerovirus and luteovirus transmission in the aphid Schizaphis graminum. Phytopathology 96:828–837

    Article  CAS  PubMed  Google Scholar 

  • Calonec A, Goyeau H, de Vallavielle-Pope C (1996) Effects of induced resistance on infection efficiency and sporulation of Puccinia striiformis on seedlings in varietal mixtures and on field epidemics in pure stands. Eur J Plant Pathol 102:733–741

    Article  Google Scholar 

  • Chang JH, Urbach JM, Law TF, Arnold LW, Hu A Gombar S, Grant SR, Ausubel FM, Dangl JL (2005) A high-throughput, near saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci USA 102:2549–2554

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Groves R, Civerlo EL, Viveros M, Freeman M, Zheng Y (2005) Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. Phytopathology 95:708–714

    Article  CAS  PubMed  Google Scholar 

  • Collmer A, Lindberg M, Petnicki-Ocwieja T, Schneider DJ, Alfano JR (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol 10:462–469

    Article  PubMed  CAS  Google Scholar 

  • Colvin J, Omongo C, Maruthi M, Otim-Nape G, Thresh J (2004) Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease. Plant Pathol 53:577–584

    Article  Google Scholar 

  • Deng D, Otim-Nape G, Sangare A, Ogwal S, Beachy R, Fauquet C (1997) Presence of a new virus closely associated with cassava mosaic outbreak in Uganda. Afr J Root Tuber Crops 2:23–28

    Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt and PopP2, a type III effector targeted to the plant nucleus. Proc Nat1 Acad Sci USA 100:8024–8029

    Article  CAS  Google Scholar 

  • Deyong Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey B, Frey JE (2005) Differentiation of Cucumber mosaic virus isolates by hybridization to oligonucleotides in microarray format. J Virol Methods 123:101–108

    Article  PubMed  CAS  Google Scholar 

  • Drucker M, Froissart R, Hebrard E, Uzest M, Ravallec M, Esperandieu P, Mani JC, Pugniere M, Roquet F, Fereres A, Blanc S (2002) Intracellular distribution of viral gene products regulates a complex mechanism of Cauliflower mosaic virus acquisition by its aphid vector. Proc Natl Acad Sci USA 99:2422–2427

    Article  PubMed  CAS  Google Scholar 

  • Enkerli J, Widmer F, Gessler C, Keller S (2001) Strain-specific microsatellite markers in the entomopathogenic fungus Beauveria brongniartii. Mycol Res 105:1079–1087

    Article  CAS  Google Scholar 

  • Fargette D, Konaté G, Fauquet C, Muller E, Petershmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical viruses. Annu Rev Phytopathol 43:235–260

    Article  CAS  Google Scholar 

  • Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L (eds) (2005) Virus taxonomy. VIIIth report of the international committee on taxonomy of viruses. Elsevier/Academic, London

    Google Scholar 

  • Fauquet C, Stanley J (2003) Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 142:165–189

    Article  CAS  Google Scholar 

  • Fessehaie A, De Boer SH, Levesque AC (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93:262–269

    Article  CAS  PubMed  Google Scholar 

  • Foissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    Article  Google Scholar 

  • Gaire F, Schmitt C, Stissi-Garaud C, Pinck L, Ritzenthaler C (1999) Protein 2A of Grapevine fan leaf nepovirus is implicated in RNA2 replication and colocalises to the replication sites. Virology 264:25–36

    Article  PubMed  CAS  Google Scholar 

  • Gallagher WM, Bergin OE, Rafferty M, Kelly ZD, Nolan IM, Fox EJ, Cullhane AC, Mc Ardle L, Fraga MF, Hughes L (2005) Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis 26:1856–1867

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Arenal F, Escriu F, Aranda MA, Alonso-Prados JL, Malpica JM, Fraile A (2000) Molecular epidemiology of Cucumber mosaic virus and its satellite RNA. Virus Res 71:1–8

    Article  PubMed  CAS  Google Scholar 

  • Garrett KA, Hulbert SH, Leach JE, Travers SE (2006) Ecological genomics and epidemiology. Eur J Plant Pathol 115:35–51

    Article  CAS  Google Scholar 

  • Garrett KA, Mundtt CC (1999) Epidemiology in mixed host populations. Phytopathology 89: 984–990

    Article  CAS  PubMed  Google Scholar 

  • Geering A, Olszewski N, Harper G, Lockhart B, Thomas J (2005a) Banana contains a diverse array of endogenous badnaviruses. J Gen Virol 86:511–520

    Article  CAS  Google Scholar 

  • Geering A, Pooggin M, Olszewski N, Lockhart B, Thomas J (2005b) Characterization of Banana streak Mysore virus and evidence that its DNA is integrated in the B genome of cultivated Musa. Arch Virol 150:787–796

    Article  CAS  Google Scholar 

  • Gray SM, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566

    Article  PubMed  CAS  Google Scholar 

  • Guo JR, Schnieder F, Beyer M, Verreet JA (2005) Rapid detection of Mycosphaerella graminincola in wheat using reverse transcription-PCR assay. J Phytotopathol 153:674–679

    Article  CAS  Google Scholar 

  • Hamelin RC, Allaire M, Bergeron MJ, Nocole MC, Lecours N (2005) Molecular epidemiology of white pine blister rust: recombination and spatial distribution. Phytopathology 95:793–799

    Article  CAS  PubMed  Google Scholar 

  • Harper G, Osuji. J, Heslop-Harrison J, Hull R (1999) Integration of Banana streak badnvirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213

    Article  PubMed  CAS  Google Scholar 

  • Harrison BD, Murant AF (1977) Nematode transmissibility of pseudo-recombinant isolates of Tomato black ring virus. Ann Appl Biol 86:209–212

    Article  Google Scholar 

  • Harrison B, Zhous X, Otim-Nape G, Liu Y, Robinson D (1997) Role of a novel type of double infection in the geminivirus-induced epidemic of severe cassava mosaic in Uganda. Ann Appl Biol 131:437–448

    Article  Google Scholar 

  • Hayden MJ, Sharp PJ (2001a) Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers. Nucleic Acids Res 29:e43

    Article  CAS  Google Scholar 

  • Hayden MJ, Sharp PJ (2001b) Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Res 29:e44

    Article  CAS  Google Scholar 

  • Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB (2005) Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains. Appl Environ Microbiol 71: 3581–3588

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health. Emerg Infect Dis 4:221–227

    PubMed  CAS  Google Scholar 

  • Hong Y, Robinson D, Harrison B (1993) Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. J Gen Virol 74:2437–2443

    PubMed  CAS  Google Scholar 

  • Humeau L, Roumagnac P, Picard Y, Robéne-Soustrade I., Chiroleu F, Gagnevin L, Pruvost O (2006) Quantitative and molecular epidemiology of bacterial blight of onion in seed production fields. Phytopathology 96:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ieki H, Ozaki K (2002) Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription-polymerase chain reaction. J Virol Methods 106:235–239

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance and avirulence gene products confers rice blast resistance. Eur Mol Biol Org J 19:4004–4014

    CAS  Google Scholar 

  • Keiper FJ, Haque MS, Hayden MJ, Park RF (2006) Genetic diversity in Australian populations of Puccinia graminis f.sp. avenae. Phytopathology 96:96–104

    Article  CAS  PubMed  Google Scholar 

  • Kohmoto K, Itoh Y, Shimomura N, Kondoh Y, Otani H, Kodama M, Nishimura S, Nakatsuka S (1993) Isolation and biological activities of two host-specific toxins from the tangerine pathotype of Alternaria alternata. Phytopathology 83:495–502

    Article  CAS  Google Scholar 

  • Kohmoto K, Scheffer RP, Whiteside JO (1979) Host-selective toxins from Alternaria citri. Phytopathology 69:667–671

    Article  CAS  Google Scholar 

  • Leach JE, Vera Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224

    Article  PubMed  CAS  Google Scholar 

  • Lecomte P, Manceau C, Paulin JP, Keck M (1997) Identification of PCR analysis on plasmid pEA 29 of isolates of Erwinia amylovora responsible for an outbreak in Central Europe. Eur J Plant Pathol 103:91–98

    Article  CAS  Google Scholar 

  • Lee GP, Min BE. Kim CS, Choi SH, Harn CH, Kim SU, Ryu KH (2003) Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses. J Virol Methods 110:19–24

    Article  PubMed  CAS  Google Scholar 

  • Legg J (1999) Emergence, spread and strategies for controlling the pandemic of Cassava mosaic virus disease in East and Central Africa. Crop Prot 18:627–637

    Article  Google Scholar 

  • Leh V, Jacquot E, Geldreich A, Herman T, Leclerc D, Cerutti M, Yot P, Keller M, Blanc S (1999) Aphid transmission of Cauliflower mosaic virus requires the PIII protein. EMBO J 18: 7077–7085

    Article  PubMed  CAS  Google Scholar 

  • Li C, Cox-Foster D, Gray SM, Gildow F (2001) Vector specificity of Barley yellow dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid Sitobion avenae. Virology 286:125–133

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Rubio L, Smythe AB, Falk BW (2004) Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol 78:6666–6675

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Moya JJ (2002) Genes involved in insect-mediated transmission of plant viruses. In: Khan JA, Dijkstra J (eds) Plant viruses as molecular pathogens. CBS Publishers and Distributors, New Delhi, India, pp 31–60

    Google Scholar 

  • Luo Y, Ma Z, Reyes H C, Morgan D, Michailides TJ (2007) Quantification of airborne spores of Monilinia fructicola in stone fruit orchards of California using real-time PCR. Eur J Plant Pathol 118:145–154

    Article  Google Scholar 

  • Ma Z, Luo Y, Michailides TJ (2003) Nested PCR assays for detection of Monilinia fructicola in stone fruit orchards and Botryospheria dothidea from pistachios in California. J Phytopathol 151:312–322

    Article  CAS  Google Scholar 

  • MacFarlane SA (2003) Molecular determinants of the transmission of plant viruses by nematodes. Mol Plant Pathol 4:211–215

    Article  CAS  Google Scholar 

  • MacFarlane SA, Wallis CV, Brown DJF (1996) Multiple genes involved in the nematode transmission of Pea early browning virus. Virology 219:417–422

    Article  PubMed  CAS  Google Scholar 

  • May KJ, Ristaino JB (2004) Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish Potato Famine. Mycol Res 108:471–479

    Article  PubMed  CAS  Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnosis- new solutions for old problems. Eur J Plant Pathol 116:1–19

    Article  CAS  Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–410

    Article  PubMed  CAS  Google Scholar 

  • Ndowora T, Dahal G, La Flaeur D, Harper G, Hull R (1999) Evidence that Badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255: 214–220

    Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Methods 62:57–69

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116

    Article  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of Tomato yellow leaf curl virus that are crucial for systemic infection, particle formation and insect transmission. J Virol 72:10050–10057

    PubMed  CAS  Google Scholar 

  • Omongo C (2003) Cassava whitefly, Bemisia tabaci behavior and ecology in relation to the spread of the cassava mosaic pandemic in Uganda. Doctoral Thesis, Univ Greenwich, Greenwich

    Google Scholar 

  • Palukaitis P, Roosink M J, Dietzgen RG, Francki RIB (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348

    PubMed  CAS  Google Scholar 

  • Peever TL, Olsen L, Ibáñez A, Timmer LW (2000) Genetic differentiation and host specificity among populations of Alternaria spp. causing brown spot of grapefruit and tangerine x grapefruit hybrids in Florida. Phytopathology 90:407–414

    Article  CAS  PubMed  Google Scholar 

  • Perry KL, Zhang L, Palukaitis P (1998) Amino acid changes in the coat protein of Cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology 242:204–210

    Article  PubMed  CAS  Google Scholar 

  • Ploeg AT, Ribinson DJ, Brown DJF (1993) RNA2 of Tobacco rattle virus encodes the determinants of transmissibility by trichodorid vector nematodes. J Gen Virol 74:1463–1466

    PubMed  CAS  Google Scholar 

  • Purcifull DE, Edwardson JR, Hiebert E, Gonsalves D (1984) Papaya ringspot virus. CMI/AAS description of plant viruses, No. 292, CAB International, Wallingford, UK

    Google Scholar 

  • Ragozzino E, Faggioli F, Barba M (2004) Development of a one tube-one step RT-PCR protocol for the detection of seven viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid and Pospiviroid. J Virol Methods 121:25–29

    Article  PubMed  CAS  Google Scholar 

  • Rosell RC, Bedford ID, Frohlich DR, Gill RJ, Brown JK, Markham PG (1997) Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Ann Entomol Soc Am 90:575–589

    Google Scholar 

  • Rosell, RC, Torres-Jerez I, Brown JK (1999) Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva and hemolymph and honey dew. Phytopathology 89:239–246

    Article  CAS  PubMed  Google Scholar 

  • Roumagnac P, Pruvost O, Chiroleu C, Hughes G (2004) Spatial and temporal analyses of bacterial blight of onion caused by Xanthomonas axonopodis pv. allii. Phytopathology 94:138–146

    Article  CAS  PubMed  Google Scholar 

  • Ruppitsch W, Stöger AR, Keck M (2004) Stability of short sequence repeats and their application for the characterization of Erwinia amylovora strains. FEMS Microbiol Lett 234:1–8

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jean S, Testa A, Kamoun S, Madden LV (2005) Use of a green fluorescent marker for studying splash dispersal of sporangia of Phytophthora infestans. Eur J Plant Pathol 112:391–394

    Article  Google Scholar 

  • Swanson M, Harrison B (1994) Properties, relationships and distribution of cassava mosaic geminiviruses. Trop Sci 34:15–25

    Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of fruits and vegetables. Ann Appl Biol 110:661–681

    Article  Google Scholar 

  • Van Sluys MA, Monteiro-Vitrorello CB, Camargo LEA, Menck CFM, da Silva ACR., Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    Article  PubMed  CAS  Google Scholar 

  • Vassilakos N, Vellios EK, Brown EC, Brown DJF, MacFarlane SA (2001) Tobravirus 2b protein acts in trans to facilitate transmission by nematodes. Virology 279:478–487

    Article  PubMed  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wang RY, Ammar ED, Thornbury DW, Lopez-Moya JJ, Pirone TP (1996) Loss of potyvirus transmissibility and helper component activity correlate with non-retention of virions in aphid stylets. J Gen Virol 77:861–867

    Google Scholar 

  • Wang RY, Kritzman A, Hershman DE, Ghabrial SS (2006) Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis 90:920–926

    Article  Google Scholar 

  • Wang RY, Powell G, Hardie J Pirone TP (1998) Role of the helper component in vector-specific transmission of potyviruses. J Gen Virol 79:1519–1524

    PubMed  CAS  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Amer J Hum Genet 44:388–396

    PubMed  CAS  Google Scholar 

  • Wei W, Opgenorth DC, Davis RE, Chang CJ, Summers CG, Zhao Y (2006) Characterization of a novel adhesin-like gene and design of a real-time PCR for rapid, sensitive and specific detection of Spiroplasma kunkelii. Plant Dis 90:1233–1238

    Article  CAS  Google Scholar 

  • Wintermantel WM, Wisler GC (2006) Vector specificity, host range and genetic diversity of Tomato chlorosis virus. Plant Dis 90:814–819

    Article  CAS  Google Scholar 

  • Zhang Y, Geider K (1997) Differentiation of Erwinia amylovora strains by pulsed field gel electrophoresis. Appl Environ Microbiol 63:4421–4426

    PubMed  CAS  Google Scholar 

  • Zhang Y, Merghi M, Bazzi C, Geider K (1998) Genomic analysis by pulsed field gel electrophoresis of Erwinia amylovora strains from the Mediterranean region including Italy. J Plant Pathol 80:225–232

    CAS  Google Scholar 

  • Zhou X., Liu Y, Calvert L, Munoz C, Otim-Nape G, Robinson D, Harrison B (1997) Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111

    PubMed  CAS  Google Scholar 

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leaung H, Mew CW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control. Nature 406:718–722

    Article  PubMed  CAS  Google Scholar 

  • Zink AR, Reischl U, Wolf H, Nerlich AG (2002) Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 213:141–147

    Article  PubMed  CAS  Google Scholar 

  • Zwankhuizen MJ, Govers F, Zadoks JC (1998) Development of potato late blight epidemics: disease foci, disease gradients and infection sources. Phytopathology 88:754–763

    Article  CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2008). Molecular Ecology and Epidemiology. In: Molecular Biology in Plant Pathogenesis and Disease Management. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8245-0_3

Download citation

Publish with us

Policies and ethics