Skip to main content

Carbosilane Dendrimers: Molecular Supports and Containers for Homogeneous Catalysis and Organic Synthesis

  • Chapter
Silicon-Containing Dendritic Polymers

The attachment of catalytic species to support materials is a widely applied method to combine the advantages of homogeneous and heterogeneous (supported) catalysis. The commonly used organic supports are insoluble polymeric materials, which have been developed with great success for solid phase organic synthesis and have a long history and importance. Obvious difficulties with these materials are their restricted loading capacity, the wettability issues, the often restricted accessibility of active (supported) sites, their reactivity or incompatibility towards reactive reagents, such as organometallics, and last but not least their high polydispersity. The use of soluble support materials can solve some of these problems, and for this reason soluble dendrimers have been explored as supports for homogeneous catalysts. Some of the advantages of dendrimers over many other types of macromolecules are their well defined structures and low polydispersity, good solubility in common organic solvents, and the presence of well-defined end-groups for the anchoring of catalytic species (see Chapter 1), all of which facilitate analysis of the (loaded) dendrimers often with atomic precision.

During the last decade, several reviews appeared describing the use of dendrimers as soluble supports for catalysts [1–11]. Among these, the silicon-based carbosilane dendrimers (see Chapter 3) assume a special position because of their structural robustness and stability towards highly reactive reagents. These are important prerequisites for any derivatization of the dendritic structure as well as for the introduction of catalytic metal sites, vide infra. Carbosilane dendrimers derive their kinetic and thermodynamic stability from the relatively high dissociation energy (306 kJ/mol) and low polarity of the Si—C bond [1]. The first demonstration of the potential of these unique properties was the successful synthesis of a carbosilane dendrimer 1 functionalized at its periphery with catalytically active NCN-pincer nickel catalysts (NCN = [C6H3(CH2NMe2)2−2,6]−) [12]. Due to their molecular size of about 2 nm, such catalytic species can be separated from the reaction solutions by nanofiltration, which in principle opens the way for recycling of the catalyst as well as for continuous use of such catalysts in membrane reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlenk C, Frey H (1999) Monatsh Chem 130:3

    CAS  Google Scholar 

  2. Andrés R, de Jesús E, Flores JC (2007) New J Chem 31:1161

    Article  Google Scholar 

  3. Berger A, Klein Gebbink RJM, van Koten G (2006) Top Organomet Chem 20:1

    Article  CAS  Google Scholar 

  4. Méry D, Astruc D (2006) Coord Chem Rev 250:1965

    Article  Google Scholar 

  5. Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125

    Article  CAS  Google Scholar 

  6. Astruc D, Chardac F (2001) Chem Rev 101:2991

    Article  CAS  Google Scholar 

  7. Kreiter R, Kleij AW, Klein Gebbink RJM, van Koten G (2001) Top Curr Chem 217:163

    Article  CAS  Google Scholar 

  8. Reek JNH, Arévalo S, van Heerbeek R, Kamer PCJ, van Leeuwen PWNM (2006) Adv Catal 49:71

    Article  CAS  Google Scholar 

  9. Reek JNH, de Groot D, Oosterom GE, Kamer PCJ, van Leeuwen PWNM (2002) Rev Mol Biotech 90:159

    Article  CAS  Google Scholar 

  10. Twyman LJ, King ASH, Martin IK (2002) Chem Soc Rev 31:69

    Article  CAS  Google Scholar 

  11. Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2001) Angew Chem Int Ed 40:1828

    Article  CAS  Google Scholar 

  12. Knapen JWJ, van der Made AW, de Wilde JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G (1994) Nature 372:659

    Article  CAS  Google Scholar 

  13. Liang C, Fréchet JMJ (2005) Prog Polym Sci 30:385

    Article  CAS  Google Scholar 

  14. Kleij AW, Gossage RA, Jastrzebski JTBH, Boersma J, van Koten G (2000) Angew Chem Int Ed 39:176

    Article  CAS  Google Scholar 

  15. Kleij AW, Gossage RA, Klein Gebbink RJM, Brinkmann N, Reijerse EJ, Kragl U, Lutz M, Spek AL, van Koten G (2000) J Am Chem Soc 122:12112

    Article  CAS  Google Scholar 

  16. Chavan SA, Maes W, Gevers LEM, Wahlen J, Vankelecom IFJ, Jacobs PA, Dehaen W, de Vos DE (2005) Chem Eur J 11:6754

    Article  CAS  Google Scholar 

  17. Müller C, Nijkamp MG, Vogt D (2005) Eur J Inorg Chem 4011

    Google Scholar 

  18. Vankelecom IFJ (2002) Chem Rev 102:3779

    Article  CAS  Google Scholar 

  19. Dijkstra HP, van Klink GPM, van Koten G (2002) Acc Chem Res 35:798

    Article  CAS  Google Scholar 

  20. Albrecht M, van Koten G (2001) Angew Chem Int Ed 40:3750

    Article  CAS  Google Scholar 

  21. Albrecht M, Schlupp M, Bargon J, van Koten G (2001) Chem Commun 1874

    Google Scholar 

  22. Albrecht M, Lutz M, Spek AL, van Koten G (2000) Nature 406:970

    Article  CAS  Google Scholar 

  23. Albrecht M, Gossage RA, Lutz M, Spek AL, van Koten G (2000) Chem Eur J 6:1431

    Article  CAS  Google Scholar 

  24. Albrecht M, van Koten G (1999) Adv Mater 11:171

    Article  CAS  Google Scholar 

  25. van Heerbeek R, Kamer PCJ, van Leeuwen PWNM, Reek JNH (2002) Chem Rev 102:3717

    Article  Google Scholar 

  26. Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Chem Soc Rev 37:365

    Article  CAS  Google Scholar 

  27. van der Made AW, van Leeuwen PWNM (1992) J Chem Soc Chem Commun 1400

    Google Scholar 

  28. Ropartz L, Morris RE, Schwarz GP, Foster DF, Cole-Hamilton DJ (2000) Inorg Chem Commun 3:714

    Article  CAS  Google Scholar 

  29. Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ (2002) J Mol Catal A Chem 182–183:99

    Article  Google Scholar 

  30. Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ (2001) Chem Commun 361

    Google Scholar 

  31. Ropartz L, Haxton KJ, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc Dalton Trans 4323

    Google Scholar 

  32. Ropartz L, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc Dalton Trans 1997

    Google Scholar 

  33. Jaffrès PA, Morris RE (1998) J Chem Soc Dalton Trans 2767

    Google Scholar 

  34. Wijkens P, Jastrzebski JTBH, van der Schaaf PA, Kolly R, Hafner A, van Koten G (2000) Org Lett 2:1621

    Article  CAS  Google Scholar 

  35. de Groot D, Emmerink PG, Coucke C, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2000) Inorg Chem Commun 3:711

    Article  Google Scholar 

  36. Reek JNH, de Groot D, Oosterom GE, Kamer PCJ, van Leeuwen PWNM (2003) CR Chim 6:1061

    Article  CAS  Google Scholar 

  37. de Groot D, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2002) Eur J Org Chem 1085

    Google Scholar 

  38. de Groot D, Eggeling EB, de Wilde JC, Kooijman H, van Haaren RJ, van der Made AW, Spek AL, Vogt D, Reek JNH, Kamer PCJ, van Leeuwen PWNM (1999) Chem Commun 1623

    Google Scholar 

  39. Oosterom GE, van Haaren RJ, Reek JNH, Kamer PCJ, van Leeuwen PWNM (1999) Chem Commun 1119

    Google Scholar 

  40. Hovestad NJ, Eggeling EB, Heidbüchel HJ, Jastrzebski JTBH, Kragl U, Keim W, Vogt D, van Koten G (1999) Angew Chem Int Ed 38:1655

    Article  CAS  Google Scholar 

  41. Eggeling EB, Hovestad NJ, Jastrzebski JTBH, Vogt D, van Koten G (2000) J Org Chem 65:8857

    Article  CAS  Google Scholar 

  42. Rodríguez LI, Rossell O, Seco M, Grabulosa A, Muller G, Rocamora M (2006) Organometallics 25:1368

    Article  Google Scholar 

  43. Rodríguez LI, Rossell O, Seco M, Orejón A, Masdeu-Bultó AM (2008) J Organomet Chem 693:1857

    Article  Google Scholar 

  44. Benito M, Rossell O, Seco M, Muller G, Ordinas JI, Font-Bardia M, Solans X (2002) Eur J Inorg Chem 2477

    Google Scholar 

  45. Rodríguez LI, Rossell O, Seco M, Muller G (2007) J Organomet Chem 692:851

    Article  Google Scholar 

  46. Angurell I, Muller G, Rocamora M, Rossell O, Seco M (2003) Dalton Trans 1194

    Google Scholar 

  47. Angurell I, Muller G, Rocamora M, Rossell O, Seco M (2004) Dalton Trans 2450

    Google Scholar 

  48. Bourrier O, Kakkar AK (2003) J Mater Chem 13:1306

    Article  CAS  Google Scholar 

  49. Bourrier O, Kakkar AK (2004) Macromol Symp 209:97

    Article  CAS  Google Scholar 

  50. Petrucci-Samija M, Guillemette V, Dasgupta M, Kakkar AK (1999) J Am Chem Soc 121:1968

    Article  CAS  Google Scholar 

  51. Findeis RA, Gade LH (2003) Eur J Inorg Chem 99

    Google Scholar 

  52. Cheliatsidou P, White DFS, Cole-Hamilton DJ (2004) Dalton Trans 3425

    Google Scholar 

  53. Grove DM, Van Koten G, Mul P, Zoet R, Van Der Linden JGM, Legters J, Schmitz JEJ, Murrall NW, Welch AJ (1988) Inorg Chem 27:2466

    Article  CAS  Google Scholar 

  54. Gossage RA, van de Kuil LA, van Koten G (1998) Acc Chem Res 31:423

    Article  CAS  Google Scholar 

  55. Andrés R, de Jesús E, de la Mata FJ, Flores JC, Gómez R (2005) Eur J Inorg Chem 3742

    Google Scholar 

  56. Mager M, Becke S, Windisch H, Denninger U (2001) Angew Chem Int Ed 40:1898

    Article  CAS  Google Scholar 

  57. Beerens H, Wang W, Verdonck L, Verpoort F (2002) J Mol Catal A Chem 190:1

    Article  CAS  Google Scholar 

  58. Beerens H, Verpoort F, Verdonck L (2000) J Mol Catal A Chem 151:279

    Article  CAS  Google Scholar 

  59. Beerens H, Verpoort F, Verdonck L (2000) J Mol Catal A Chem 159:197

    Article  CAS  Google Scholar 

  60. Hovestad NJ, Jastrzebski JTBH, van Koten G, Bon SAF, Waterson C, Haddleton DM (1999) Polym Preprints (Am Chem Soc Div Polym Chem) 40:393

    CAS  Google Scholar 

  61. Hovestad NJ, van Koten G, Bon SAF, Haddleton DM (2000) Macromolecules 33:4048

    Article  CAS  Google Scholar 

  62. van der Boom ME, Milstein D (2003) Chem Rev 103:1759

    Article  Google Scholar 

  63. Dupont J, Consorti CS, Spencer J (2005) Chem Rev 105:2527

    Article  CAS  Google Scholar 

  64. Solin N, Kjellgren J, Szabo KJ (2003) Angew Chem Int Ed 42:3656

    Article  CAS  Google Scholar 

  65. Singleton JT (2003) Tetrahedron 59:1837

    Article  CAS  Google Scholar 

  66. Schlenk C, Kleij AW, Frey H, van Koten G (2000) Angew Chem Int Ed 39:3445

    Article  CAS  Google Scholar 

  67. Kleij AW, Klein Gebbink RJM, van den Nieuwenhuijzen PAJ, Kooijman H, Lutz M, Spek AL, van Koten G (2001) Organometallics 20:634

    Article  CAS  Google Scholar 

  68. Rodríguez G, Lutz M, Spek AL, van Koten G (2002) Chem Eur J 8:45

    Article  Google Scholar 

  69. Slagt MQ, Jastrzebski JTBH, Klein Gebbink RJM, van Ramesdonk HJ, Verhoeven JW, Ellis DD, Spek AL, van Koten G (2003) Eur J Org Chem 1692

    Google Scholar 

  70. Andrés R, de Jesús E, de La Mata FJ, Flores JC, Gómez R (2005) J Organomet Chem 690:939

    Article  Google Scholar 

  71. Andrés R, de Jesús E, de la Mata FJ, Flores JC, Gómez R (2002) Eur J Inorg Chem 2281

    Google Scholar 

  72. Arévalo S, de Jesús E, de La Mata FJ, Flores JC, Gómez R, Rodrigo MM, Vigo S (2005) J rganomet Chem 690:4620

    Article  Google Scholar 

  73. Arévalo S, de Jesús E, de la Mata FJ, Flores JC, Gómez R, Gómez-Sal MP, Ortega P, Vigo S (2003) Organometallics 22:5109

    Article  Google Scholar 

  74. Benito JM, de Jesús E, de la Mata FJ, Flores JC, Gómez R (2006) Organometallics 25:3045

    Article  CAS  Google Scholar 

  75. Benito JM, de Jesús E, de la Mata FJ, Flores JC, Gómez R (2005) Chem Commun 5217

    Google Scholar 

  76. Benito JM, de Jesús E, de la Javier Mata F, Flores JC, Gómez R, Gómez-Sal P (2006) Organometallics 25:3876

    Article  CAS  Google Scholar 

  77. Zheng ZJ, Chen J, Li YS (2004) J Organomet Chem 689:3040

    Article  CAS  Google Scholar 

  78. Overett MJ, Meijboom R, Moss JR (2005) Dalton Trans 551

    Google Scholar 

  79. Blom B, Overett MJ, Meijboom R, Moss JR (2005) Inorg Chim Acta 358:3491

    Article  CAS  Google Scholar 

  80. Arink AM, van de Coevering R, Wieczorek B, Firet J, Jastrzebski JTBH, Klein Gebbink RJM, van Koten G (2004) J Organomet Chem 689:3813

    Article  CAS  Google Scholar 

  81. van Koten G, Jastrzebski JTBH (1999) J Mol Catal A Chem 146:317

    Article  Google Scholar 

  82. Roesler R, Har BJN, Piers WE (2002) Organometallics 21:4300

    Article  CAS  Google Scholar 

  83. Sato I, Kodaka R, Hosoi K, Soai K (2002) Tetrahedron Asymmet 13:805

    Article  CAS  Google Scholar 

  84. Sato I, Shibata T, Ohtake K, Kodaka R, Hirokawa Y, Shirai N, Soai K (2000) Tetrahedron Lett 41:3123

    Article  CAS  Google Scholar 

  85. Sato I, Kodaka R, Shibata T, Hirokawa Y, Shirai N, Ohtake K, Soai K (2000) Tetrahedron Asymmet 11:2271

    Article  CAS  Google Scholar 

  86. Meder MB, Haller I, Gade LH (2005) Dalton Trans 1403

    Google Scholar 

  87. Meder M, Galka CH, Gade LH (2005) Monatsh Chem 136:1693

    Article  CAS  Google Scholar 

  88. Li CF, Li DX, Zhang ZJ, Feng SY (2005) Chin Chem Lett 16:1389

    CAS  Google Scholar 

  89. Li CF, Li DX, Feng SY (2005) Polym Int 54:1041

    Article  CAS  Google Scholar 

  90. Merrifield RB (1963) J Am Chem Soc 85:2149

    Article  CAS  Google Scholar 

  91. Klein Gebbink RJM, Kruithof CA, van Klink GPM, van Koten G (2002) Rev Mol Biotechnol 90:183

    Article  Google Scholar 

  92. Hovestad NJ, Ford A, Jastrzebski JTBH, van Koten G (2000) J Org Chem 65:6338

    Article  CAS  Google Scholar 

  93. Le Nôtre J, Firet JJ, Sliedregt LAJM, van Steen BJ, van Koten G, Klein Gebbink RJM (2005) Org Lett 7:363

    Article  Google Scholar 

  94. Fan QH, Li YM, Chan ASC (2002) Chem Rev 102:3385

    Article  CAS  Google Scholar 

  95. van de Coevering R, Klein Gebbink RJM, van Koten G (2005) Prog Polym Sci 30:474

    Article  Google Scholar 

  96. van de Coevering R, Bruijnincx PCA, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2007) New J Chem 31:1337

    Article  Google Scholar 

  97. van de Coevering R, Bruijnincx PCA, van Walree CA, Klein Gebbink RJM, van Koten G (2007) Eur J Org Chem 2931

    Google Scholar 

  98. van de Coevering R, Alfers AP, Meeldijk JD, Martínez-Viviente E, Pregosin PS, Klein Gebbink RJM, van Koten G (2006) J Am Chem Soc 128:12700

    Article  Google Scholar 

  99. van de Coevering R, Kreiter R, Cardinali F, van Koten G, Nierengarten JF, Klein Gebbink RJM (2005) Tetrahedron Lett 46:3353

    Article  Google Scholar 

  100. van de Coevering R, Kuil M, Klein Gebbink RJM, van Koten G (2002) Chem Commun 1636

    Google Scholar 

  101. Kleij AW, van de Coevering R, Klein Gebbink RJM, Noordman AM, Spek AL, van Koten G (2001) Chem Eur J 7:181

    Article  CAS  Google Scholar 

  102. Ribaudo F, van Leeuwen PWNM, Reek JNH (2006) Top Organomet Chem 20:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Wander, M., Gebbink, R.J., van Koten, G. (2009). Carbosilane Dendrimers: Molecular Supports and Containers for Homogeneous Catalysis and Organic Synthesis. In: Dvornic, P.R., Owen, M.J. (eds) Silicon-Containing Dendritic Polymers. Advances in Silicon Science, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8174-3_9

Download citation

Publish with us

Policies and ethics