Skip to main content

Polysiloxane and Siloxane-Based Dendrimers

  • Chapter
Silicon-Containing Dendritic Polymers

Part of the book series: Advances in Silicon Science ((ADSS,volume 2))

Three different original protocols for the synthesis of siloxane dendrimers have been described. However, after appearing in the literature at much the same time they did not result in any follow-up, unlike many other strategies proposed simultaneously or even later. To appreciate the suddenness of the introduction of siloxane dendrimers and the reasons for their subsequent neglect we need to make an excursion into orga-nosiloxane chemistry. Silicones are based on a relatively small number of starting functional monomers. Moreover, their combination into new structures is restricted by the reversibility of most reactions and as a consequence by the statistical character of the main methods for the synthesis of siloxane polymers [1–3]. Although the existence of some selectivity results in the formation of useful polycyclics, the possibilities of structural control of linear and especially of branched oligomers and polymers are seriously limited. The nonequilibrium polymerization of strained cyclosiloxanes [4] is a rare exception to this rule which emphasizes the hopelessness of attempts to overcome the “statistical ill fate” that haunts the siloxane structures. All efforts to apply heterofunctional processes to achieve structural diversity are limited by this specificity of the siloxane bond and by a scanty number of appropriate reagents.

Because of this, it is not surprising that after the discovery of sodiumoxyorganoalkoxy-silanes, compounds unique in their synthetic versatility and often called Rebrov's salts [5], the branched functional oligomers and acyclic methylsilsesquioxanes came into the focus of our research attention. Furthermore, most of the oligomers obtained using this approach became the first generations of the corresponding dendrimers, but only after the finding of an appropriate method for quantitative transformation of alkoxy groups into the chlorosilyl ones, and a way to reiteratively use them in pairs did it become evident that possibilities of the new approach for dendrimer synthesis were enormous (see Chapter 1). By that time, dendrimers had become well known in the field of organic polymers, largely due to the efforts of D. Tomalia [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazant V, Chvalovsky V, et al. (1965) Organosilicon Compounds. Academic, New York.

    Google Scholar 

  2. Andrianov KA (1965) Metalloorganic Polymers. Wiley, New York.

    Google Scholar 

  3. Fleming I (1984) Organic Silicon Chemistry in Comprehensive Organic Chemistry, Part 3. Pergamon, New York.

    Google Scholar 

  4. Boileau S (1980) Am Chem Soc Polym Prepr 21, 1:25.

    Google Scholar 

  5. Rebrov EA, Muzafarov AM, et al. (1988) Doklady Chemistry USSR 302, 2:346.

    Google Scholar 

  6. Tomalia DA, Baker H, et al. (1986) Macromolecules 19:2466.

    Article  CAS  Google Scholar 

  7. Tomalia DA, Hall M, et al. (1987) JACS 109:1601.

    Article  CAS  Google Scholar 

  8. Muzafarov AM, Rebrov EA, et al. (1989) Doklady Chemistry USSR 309, 2:376.

    Google Scholar 

  9. Tomalia DA (1984) 1st International Polymer Conference Society of Polymer Science. Kyoto, Japan.

    Google Scholar 

  10. Tomalia DA, Baker H, et al. (1985) Polym J (Tokyo) 17:117.

    CAS  Google Scholar 

  11. Muzafarov AM, Rebrov EA, et al. (1991) Usp Khim 60:1596.

    CAS  Google Scholar 

  12. Rebrov EA, Muzafarov AM (2006) Heteroatom Chem 17, 6:514.

    Article  CAS  Google Scholar 

  13. Uchida H, Kabe Y, et al. (1990) JACS 112, 19:7077.

    Article  Google Scholar 

  14. Uchida H, Kabe Y, et al. (1991) Kao Corp JP 03263431 (Chem Abstr 116:236379).

    Google Scholar 

  15. Uchida H,Yoshino K, et al. (1991) Kao Corp JP 03263430 (Chem Abstr 116:130381).

    Google Scholar 

  16. Morikawa A, Kakimoto MA, et al. (1991) Macromolecules 24:3469.

    Article  CAS  Google Scholar 

  17. Morikawa A, Kakimoto MA, et al. (1992) Polym J 24:573.

    Article  CAS  Google Scholar 

  18. Roovers J (1993) Macromolecules 26:4324

    Article  CAS  Google Scholar 

  19. Muzafarov AM, Gorbatsevich OB, et al. (1993) Polym Sci 35:1575.

    Google Scholar 

  20. Frey H, Lorenz K, et al. (1996) Macromol Symp 102:19.

    CAS  Google Scholar 

  21. Frey H, Mühlhaupt R, et al. (1995) Polym Mater Sci Eng 73:127.

    CAS  Google Scholar 

  22. Voronkov MG, Mileshkevich VP (1976) Siloxane Bond. Nauka, USSR.

    Google Scholar 

  23. Krasovskii VG, Sadovskii NA, et al. (1994) Polym Sci Ser A 36:589.

    Google Scholar 

  24. Krasovskii VG, Ignat'eva GM, et al. (1996) Polym Sci Ser A 38:1070.

    Google Scholar 

  25. Ponomarenko SA, Rebrov EA, et al. (1996) Liq Cryst 21:1.

    Article  CAS  Google Scholar 

  26. Ponomarenko SA, Rebrov EA, et al. (1998) Polym Sci Ser A 40:763.

    Google Scholar 

  27. Richardson RM, Ponomarenko SA, et al. (1999) Liq Cryst 26:101.

    Article  CAS  Google Scholar 

  28. Shumilkina NA, Myakushev VD, et al. (2005) Doklady Chem USSR 403:155.

    Article  CAS  Google Scholar 

  29. Shumilkina NA, Myakushev VD, et al. (2006) Polym Sci Ser A 48, 12:1240.

    Article  Google Scholar 

  30. Ignat'eva GM, Rebrov EA, et al. (1997) Polym Sci Ser A 39:843

    Google Scholar 

  31. Brüning K, Lang H (1998) J Organomet Chem 571:145.

    Article  Google Scholar 

  32. Kim C, Kwon A (1998) Synthesis 105.

    Google Scholar 

  33. Kim C, Jeong Y, et al. (1998) J Organomet Chem 570:9.

    Article  CAS  Google Scholar 

  34. Brüning K, Lang H (1999) Synthesis 1931.

    Google Scholar 

  35. Muzafarov AM, Golly M, et al. (1995) Macromolecules 28:8444.

    Article  CAS  Google Scholar 

  36. Dvornic PR (2006) J Polym Sci Part A Polym Chem 44:2755.

    Article  CAS  Google Scholar 

  37. Dvornic PR, de Leuze-Jallouli AM, et al. (2000) Macromolecules 33:5366.

    Article  CAS  Google Scholar 

  38. de Leuze-Jallouli AM, Swanson DR, et al. (1997) Polym Mater Sci Eng 77:67.

    Google Scholar 

  39. Dvornic PR, Hu J, et al. (2002) Silicon Chem 1:177.

    Article  CAS  Google Scholar 

  40. Bystrova AV, Tatarinova EA, et al. (2005) Polym Sci Ser A 47, 8:820.

    Google Scholar 

  41. Bystrova AV, Tatarinova EA, et al. (2007) Science and Technology of Silicones and Silicone-Modified Materials. ASC Symposium Series 964. ISBN10: 0841239436

    Google Scholar 

  42. Bystrova AV, Parshina EA, et al. (2007) Nanotechnol Russ 2, 1:83.

    Google Scholar 

  43. Tereshchenko AS, Getmanova E V, et al. (2007) Russ Chem Bull Intern Edit 56:2200.

    Article  CAS  Google Scholar 

  44. Getmanova E V, Tereshchenko AS, et al. (2004) Russ Chem Bull Intern Edit 53, 1:137.

    Article  Google Scholar 

  45. Obreskova MV, Rogul' GS, et al. (2008) Doklady Chem 419, 1:69.

    Google Scholar 

  46. Hawker CJ, Malmstrom EE (1997) JACS 119:9903.

    Article  CAS  Google Scholar 

  47. Chojnowski J, Cypryk M (2003) Macromolecules 36:3890.

    Article  CAS  Google Scholar 

  48. Kazakova V V, Rebrov EA, et al. (2000) Silicones and Silicone-Modified Materials. ACS Symposium series 792:503. ISBN 0-8412-3613-5.

    Article  Google Scholar 

  49. Voronina N V, Meshkov IB et al. (2008) Nanotechnol Russ 3, 5–6:321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Muzafarov, A., Rebrov, E. (2009). Polysiloxane and Siloxane-Based Dendrimers. In: Dvornic, P.R., Owen, M.J. (eds) Silicon-Containing Dendritic Polymers. Advances in Silicon Science, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8174-3_2

Download citation

Publish with us

Policies and ethics