Skip to main content

Hyperbranched Silicon-Containing Polymers via Bimolecular Non-linear Polymerization

  • Chapter
Silicon-Containing Dendritic Polymers

Part of the book series: Advances in Silicon Science ((ADSS,volume 2))

Bimolecular non-linear polymerization, BMNLP (see Reaction Scheme 16.1), represents ‘the other method’ for preparation of hyperbranched polymers by the step-growth reaction mechanism. In contrast to the monomolecular polymerizations of ABx monomers, discussed for the two most prominent groups of silicon-containing hyperbranched polymers in Chapters 12 and 13, this polymerization type involves, as its name implies, two reactive monomers Ax and By, where A and B denote two types of mutually reactive functional groups while x and y are integers which must both be equal to or larger than 2, while one of them (either x or y) must be equal to or larger than 3 (see Section 16.3). Thus, the most common BMNLP systems include A2 + B3, A2 + B4, and A3 + B4 monomer combinations. General representation of the simplest of these, the A2 + B3 system in which the minor component has completely reacted, is shown in Reaction Scheme 16.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unal S, Oguz C, Yilgor E, Gallivan M, Long TE, Yilgor I (2005) Polymer 46: 4533.

    CAS  Google Scholar 

  2. Oguz C, Unal S, Long TE, Gallivan MA (2007) Macromolecules 40: 6529.

    Article  CAS  Google Scholar 

  3. Oguz C, Gallivan MA, Cakir S, Yilgor E, Yilgor I (2008) Polymer 49: 1414.

    Article  CAS  Google Scholar 

  4. Oguz C, Cakir S, Yilgor E, Gallivan M, Yilgor I (2008) Polym Prepr 49(1): 48.

    CAS  Google Scholar 

  5. Kienle RH, Hovey AG (1929) J Am Chem Soc 51: 509.

    Article  CAS  Google Scholar 

  6. Kienle RH, van der Meulen PA, Petke FE (1939) J Am Chem Soc 61: 2258.

    Article  CAS  Google Scholar 

  7. Flory PJ (1941) J Am Chem Soc 63: 3083, 3091, 3096.

    Article  CAS  Google Scholar 

  8. Stockmayer WH (1943) J Chem Phys 11: 45.

    Article  CAS  Google Scholar 

  9. Stockmayer WH (1952) J Polym Sci 9: 45.

    Article  Google Scholar 

  10. Flory PJ (1952) J Am Chem Soc 74: 2718.

    Article  CAS  Google Scholar 

  11. Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, N Y, Chapter 9.

    Google Scholar 

  12. Sunder A, Heinemann J, Frey H (2000) Chem Eur J 6: 2499.

    Article  CAS  Google Scholar 

  13. Voit B (2001) J Polym Sci, Part A: Polym Chem 38: 2505.

    Article  Google Scholar 

  14. Jikei M, Kakimoto M (2001) Prog Polym Sci 26: 1233.

    Article  CAS  Google Scholar 

  15. Russo S, Boulares A (1990) Macromol Symp 128: 13.

    Google Scholar 

  16. Russo S, Boulares A, da Rin A (1999) Macromol Symp 143: 309.

    CAS  Google Scholar 

  17. Monticelli O, Mariani A, Voit B, Komber H, Mendichi R, Pitto V, Tabuani D, Russo S (2001) High Perform Polym 13: S45.

    Article  CAS  Google Scholar 

  18. Jikei M, Chon S-H, Kakimoto M, Kawauchi S, Imase T, Watanabe J (1999) Macromolecules 32: 2061.

    Article  CAS  Google Scholar 

  19. Jikei M, Kakimoto M (2001) High Perform Polym 13: S33.

    Article  CAS  Google Scholar 

  20. Emrick T, Chang H-T, Frechet JMJ (1999) Macromolecules 32: 6380.

    Article  CAS  Google Scholar 

  21. Hecht S, Emrick T, Frechet JMJ (2000) Chem Commun 313–314.

    Google Scholar 

  22. Yan D, Gao C (2000) Macromolecules 33: 7693.

    Article  CAS  Google Scholar 

  23. Fang J, Kita H, Okamoto K (2000) Macromolecules 33: 4639.

    Article  CAS  Google Scholar 

  24. Kricheldorf HR, Vakhtangishvili L, Fritsch D (2002) J Polym Sci, Polym Chem 40: 2967.

    Article  CAS  Google Scholar 

  25. Kricheldorf HR, Fritsch D, Vakhtangishvili L, Schwarz G (2003) Macromolecules 36: 4337.

    Article  CAS  Google Scholar 

  26. Bruchmann B, Koniger R, Renz H (2002) Macromol Symp 187: 271.

    Article  CAS  Google Scholar 

  27. Bruchmann B, Schrepp W (2003) e-Polym 014.

    Google Scholar 

  28. Bruchmann B, Stumbe J-F (2004) Macromol Rapid Commun 25: 921.

    Article  Google Scholar 

  29. Czupik M, Fossum E (2003) J Polym Sci, Polym Chem 41: 3871.

    Article  CAS  Google Scholar 

  30. Chen H, Yin J (2003) Polym Bull 49: 313.

    Article  CAS  Google Scholar 

  31. Hao J, Jikei M, Kakimoto M (2003) Macromol Symp 199: 233.

    Article  CAS  Google Scholar 

  32. Lin Q, Unal S, Long TE (2003) Polym Mater Sci Eng 88: 544.

    CAS  Google Scholar 

  33. Lin Q, Long TE (2003) Macromolecules 36: 9809.

    Article  CAS  Google Scholar 

  34. Unal S, Yilgor I, Yilgor E, Sheth JP, Wilkes GL, Long TE (2004) Macromolecules 37: 7081.

    Article  CAS  Google Scholar 

  35. Unal S, Lin Q, Mourey TH, Long TE (2005) Macromolecules 38: 3246.

    Article  CAS  Google Scholar 

  36. In I, Kim SY (2004) Polym Mater Sci Eng 91: 779.

    CAS  Google Scholar 

  37. Perignon N, Mingotaud A-F, Marty J-D, Rico-Lattes I, Mingotaud C (2004) Chem Mater 16: 4856.

    Article  CAS  Google Scholar 

  38. The procedure was taken from the US Patent application 0161113 A1, 2002, which was later granted as Reference 40.

    Google Scholar 

  39. Dvornic PR, Hu J, Meier DJ, Nowak RM (2004) Polym Preprints 45(1): 585.

    CAS  Google Scholar 

  40. Dvornic PR, Hu J, Meier DJ, Nowak RM (2002) US Pat. 6,384,172 B1.

    Google Scholar 

  41. Dvornic PR, Hu J, Meier DJ, Nowak RM, Parham PL (2003) US Pat. 6,534,600 B2.

    Google Scholar 

  42. Dvornic PR, Hu J, Meier DJ, Nowak RM, Parham PL (2004) US Pat. 6,812,298 B2.

    Google Scholar 

  43. Dvornic PR, Hu J, Meier DJ, Nowak RM (2003) US Pat. 6,646,089 B2.

    Google Scholar 

  44. Macosko CW, Miller DR (1976) Macromolecules 9: 199.

    Article  CAS  Google Scholar 

  45. Gordon M (1962) Proc R Soc Lond, Ser A 268: 240.

    Article  CAS  Google Scholar 

  46. Case LC (1957) J Polym Sci 26: 333.

    Article  CAS  Google Scholar 

  47. Charlesby A (1954) Proc R Soc A 222: 542.

    Article  CAS  Google Scholar 

  48. Charlesby A (1955) Proc R Soc A 231: 521.

    Article  CAS  Google Scholar 

  49. Stauffer D, Coniglio A, Adams M (1982) Adv Polym Sci 44: 105.

    Google Scholar 

  50. Dušek K, Dušková-Smrčková M (2000) Prog Polym Sci 25: 1215.

    Article  Google Scholar 

  51. Stockmayer WH, Weil LL (1945) Advancing Fronts in Chemistry, Twiss SB, Ed., Reinhold, New York, Chapter 6.

    Google Scholar 

  52. Xu Q and Hu J (2005) Unpublished work, Michigan Molecular Institute.

    Google Scholar 

  53. Dvornic PR, Gerov VV (1994) Macromolecules 27: 1068.

    Article  CAS  Google Scholar 

  54. Dvornic PR, Gerov VV, Govedarica MN (1994) 27: 7575.

    Google Scholar 

  55. Kaganove SN, Satoh P, Dvornic PR (2006) US Pat. Appl 0147414 A1.

    Google Scholar 

  56. Dvornic PR, Zhang T, (2006) Unpublished results, Michigan Molecular Institute.

    Google Scholar 

  57. Rubinsztajn S, Stein J (1995) J Inorg Organomet Polym 5: 43.

    Article  CAS  Google Scholar 

  58. Dvornic PR, Lenz RW (1990) Silarylene-Siloxane Polymers in High Temperature Siloxane Elastomers, Hüthig & Wepf Verlag, Basel, Chapter 3, pp. 85–214.

    Google Scholar 

  59. Lucas GR, Martin RW (1952) J Am Chem Soc 74: 5225.

    Article  CAS  Google Scholar 

  60. Kantor SW (1953) J Am Chem Soc 75: 2712.

    Article  CAS  Google Scholar 

  61. Hu J, Dvornic PR, (2004) Unpublished results, Michigan Molecular Institute.

    Google Scholar 

  62. Dvornic PR (2006) J Polym Sci Part A Polym Chem 44: 2755.

    Article  CAS  Google Scholar 

  63. Scheide JE, Dvornic PR, (2007) Unpublished results, Michigan Molecular Institute.

    Google Scholar 

  64. Schamschurin A, Uhrig D, Fisher M, Clarke S, Matisons J (2008) Silicon Chem 3: 313.

    Article  Google Scholar 

  65. Dvornic PR, Hu J, Meier DJ, Nowak RM (2008) US Pat. 7, 446, 155B2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Dvornic, P.R., Meier, D.J. (2009). Hyperbranched Silicon-Containing Polymers via Bimolecular Non-linear Polymerization. In: Dvornic, P.R., Owen, M.J. (eds) Silicon-Containing Dendritic Polymers. Advances in Silicon Science, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8174-3_16

Download citation

Publish with us

Policies and ethics