Skip to main content
  • 1702 Accesses

Agrobacterium tumefaciens strain GV3101 is widely used in transient gene expression assays in plants, particularly Nicotiana spp. Transient expression assays have previously been used to study the role of pathogen effectors and elicitors in modulating plant defences, and to investigate the signal transduction pathways involved in expression of defence responses. We have used Agrobacterium-mediated transient expression to monitor the fate of fluorescent proteins targeted to specific cellular compartments in healthy and P. syringaeinfected tobacco leaves. However, inoculation of A. tumefaciens into tobacco leaves followed by co-infiltration with the tobacco pathogen P. syringae pv.tabaci resulted in delayed macroscopic symptoms when compared with leaves infiltrated with a procedural MgCl2 control followed by P. s. pv. tabaci infiltration. We have explored the mechanistic basis of this phenomenon by monitoring production of the defence signal salicylic acid (SA), which is induced during compatible and incompatible P. syringae–plant interactions. We monitored SA production in tobacco leaves inoculated with A. tumefaciens or with 10 mM MgCl2, followed by inoculation with P. s. pv. tabaci,P. s. pv. tomato, Flg22 or MgCl2. Both Pseudomonas pathogens elicited SA production in tobacco leaves but SA levels were significantly reduced by pre-treatment with A. tumefaciens. This clearly shows that Agrobacterium transient expression is not a phenotypically neutral background for studying plant defence responses and suggests that researchers should be cautious when interpreting results obtained using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chilton, M. D., Drummond, M. H., Merio, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., & Nester, E. W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • DeCleene, M. & DeLey, J. (1976). The host range of crown gall. Bot Rev 42, 389–466.

    Article  Google Scholar 

  • Ditt, R. F., Nester, E. W., & Comai, L. (2001). Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98, 10954–10959.

    Article  PubMed  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., & Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67, 16–37

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz, P., Svab, Z., & Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989–994.

    Article  PubMed  CAS  Google Scholar 

  • Hann, D. R. & Rathjen, J. P. (2007). Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49, 607–618.

    Article  PubMed  CAS  Google Scholar 

  • Hellens, R., Mullineaux, P., & Klee, H. (2000). Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W. E., Huang, L., Preston, G., Naylor, M., Carr, J. P., Li, Y., Singer, A. C., Whiteley, A. S., & Wang, H. (2006). Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. Plant J 46, 1073–1083.

    Article  PubMed  CAS  Google Scholar 

  • Jamir, Y., Guo, M., Oh, H. S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M. B., Collmer, A., & Alfano, J. R. (2004). Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37, 554–565.

    Article  PubMed  CAS  Google Scholar 

  • Karimi, M., Inze, D., & Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7, 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98, 1871–1876.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A., Bi, Y. M., Darby, R. M., Firek, S., & Draper, J. (1997). Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J 12, 1113–1126.

    Article  PubMed  CAS  Google Scholar 

  • Piers, K. L., Heath, J. D., Liang, X., Stephens, K. M., & Nester, E. W. (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 93, 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  • Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J. E., & Innes, R. W. (2003). Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233.

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn, R. A., Laurent, F., Roth, R., & De Wit, P. J. (2000). Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13, 439–446.

    Article  PubMed  Google Scholar 

  • Veena, J. H., Doerge, R. W., & Gelvin, S. B. (2003). Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35, 219–236.

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J., & Greenberg, J. T. (2006). The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62, 26–44.

    Article  PubMed  CAS  Google Scholar 

  • Winson, M. K., Swift, S., Hill, P. J., Sims, C. M., Griesmayr, G., Bycroft, B. W., Williams, P., & Stewart, G. S. (1998). Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3, 259–273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Rico, A., Preston, G.M. (2008). Agrobacterium Suppresses P. syringae-Elicited Salicylate Production in Nicotiana tabacum Leaves. In: Fatmi, M., et al. Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6901-7_11

Download citation

Publish with us

Policies and ethics