Skip to main content

Steroids secreted from peripheral endocrine glands and acting on the brain are called neuroactive steroids. Under physiological conditions, neuroactive steroids modulate multiple brain functions, and in aging, trauma or neurodegeneration their role varies from neuroprotective to neurotoxic depending on the chemical properties of the steroid. In this regard, it is known that excess levels of adrenal steroids (gluco and mineralocorticoids) sensitize the hippocampus to the deleterious effects of a pathological environment, whereas the sex hormone estradiol is a powerful hippocampal neuroprotectant. We studied the protective role of estrogens in the ailing hippocampus in animal models of aging and age-associated diseases such as diabetes mellitus and hypertension of genetic (SHR) or mineralocorticoid origin. These models present in common a glucocorticoid or mineralocorticoid overdrive, a process that exacerbates hippocampal neuropathology, according to: (1) decreased proliferation of neuronal progenitors in the subgranular zone (SGZ) of the dentate gyrus (DG); (2) astroglial reactivity, with increased expression of the glial fibrillary acidic protein (GFAP); and (3) decreased neuronal density in the hilus of the DG. These pathological changes were reversible by treatment with estrogens, which ameliorated the hippocampal parameters in middle age mice and models of diabetes and hypertension. Thus, estradiol treatment stimulated progenitor proliferation in the SGZ, normalized the density of GFAP+ astrocytes, and avoided the loss of hilar neurons. Given the important role of the hippocampus in learning, memory and neuroendocrine events, estrogens may offer therapeutic advantages for the treatment of brain disturbances accompanying systemic diseases and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Driscoll I, Sutherland RJ. The aging hippocampus: navigating between rat and human experiments. Rev Neurosci 2005; 16:87–121.

    PubMed  CAS  Google Scholar 

  2. Ferrini M, Piroli G, Frontera M, Falbo A, Lima A, De Nicola AF. Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immuno-reactivity in hippocampus of aging male rats. Neuroendocrinology 1999; 69:129–137.

    Article  PubMed  CAS  Google Scholar 

  3. McEwen BS. Stress and the aging hippocampus. Front Neuroendocrinol 1999; 20:40–79.

    Article  Google Scholar 

  4. Miller DB, O’Callaghan JP Aging, stress and the hippocampus. Ageing Res Rev 2005; 4:123–140.

    Article  PubMed  CAS  Google Scholar 

  5. Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci 1999; 2:894–897.

    Article  PubMed  CAS  Google Scholar 

  6. Heine VM, Maslam S, Joels M, Lucassen PJ. Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 2004; 25:361–375.

    Article  PubMed  CAS  Google Scholar 

  7. Kempermann G, Gast D, Gage FH. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. 2000; 52:135–143.

    Google Scholar 

  8. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16:2027–2033.

    PubMed  CAS  Google Scholar 

  9. Gould E, Tanapat P, Rydel T, Hastings N. Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry 2000; 48:715–720.

    Article  PubMed  CAS  Google Scholar 

  10. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 2002; 12:578–584.

    Article  PubMed  Google Scholar 

  11. Artola A, Kamal A, Ramakers GM, Gardoni F, DiLuca M, Biessels GJ, Cattabeni F, Gispen WH. Synaptic plasticity in the diabetic brain: advanced aging? Prog Brain Res 2002; 138:305–314.

    Article  PubMed  CAS  Google Scholar 

  12. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002; 441:1–14.

    Article  PubMed  CAS  Google Scholar 

  13. Gispen WH, Biessels, GJ. Cognition and synaptic plasticity in diabetes mellitus. TINS 2000; 23:542–549.

    PubMed  CAS  Google Scholar 

  14. Rowlands NE, Bellush LL. Diabetes mellitus: stress, neurochemistry and behavior. Neurosci Biobehav Rev 1989; 13:199–206.

    Article  Google Scholar 

  15. De Nicola AF, Magariños AM, Foglia VG. Neuroendocrine regulation in experimental diabetes (Houssay Lecture). In: Diabetes. Rifkin H, Colwell JA, Taylor SI (eds). Elsevier, Amsterdam, 1991:3–8.

    Google Scholar 

  16. Reagan LP, Magariños, AM, McEwen BS. Neurological changes induced by stress in streptozotocin diabetic rats. Ann NY Acad Sci 1999; 893:126–137.

    Article  PubMed  CAS  Google Scholar 

  17. Magariños A M, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. PNAS USA 2000; 97:10056–11061.

    Article  Google Scholar 

  18. Bestetti G, Rossi GL. Hypothalamic lesions in rats with long-term streptozotocin-induced diabetes mellitus. Acta Neurophatol 1980; 52:119–127.

    Article  CAS  Google Scholar 

  19. Russel JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999; 6:347–363.

    Article  Google Scholar 

  20. Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, De Nicola AF. Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 2005; 1038:22–31.

    Article  PubMed  CAS  Google Scholar 

  21. Saravia F, Revsin Y, Gonzalez Deniselle MC, Gonzalez S, Roig P, Lima A, Homo-Delarche F, De Nicola AF. Increased astrocyte reactivity in the hippocampus of murine models of type I diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 2002; 957:345–353.

    Article  PubMed  CAS  Google Scholar 

  22. McEwen BS, Magariños AM, Reagan LP. Studies of hormone action in the hippocampal formation. Possible relevance to depression and diabetes. J Psychsomatic Res 2002; 53:883–890.

    Article  Google Scholar 

  23. Piotrowski P, Wierzbicka K, Smiatek M. Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischemia treated with antioxidants. Folia Neuropathol 2001; 39:147–154.

    PubMed  CAS  Google Scholar 

  24. Rigsby CS, Cannady WE, Dorrance AM. Aldosterone: good guy or bad guy in cerebrovascular disease? Trends Endocrinol Metab 200; 16:401–406.

    Google Scholar 

  25. Sabbatini M, Strocchi P, Vitaioli L, Amenta P: The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience 2000; 100:251–258.

    Article  PubMed  CAS  Google Scholar 

  26. Sabbatini M, Catalani A, Consoli C, Marletta N, Tomassoni D and Avola R: The hippocampus in spontaneously hypertensive rats: an animal model of dementia. Mech Ageng Dev 2002; 123:547–559.

    Article  CAS  Google Scholar 

  27. Tomassoni D, Avola R, Di Tullio A, Sabbatini M, Vitaioli L, Amenta F: Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats. Clin Exp Hyp 2004; 26:335–350.

    Article  CAS  Google Scholar 

  28. Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang C-L, and Kamenishi K: Blood–brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 2002; 107:532–538.

    Article  Google Scholar 

  29. Pietranera L, Saravia F, McEwen BS, Lucas LL, Johnson AK, De Nicola AF: Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor. Neuroendocrinology 2001; 74:396–406.

    Article  PubMed  CAS  Google Scholar 

  30. Pietranera L, Saravia F, Gonzalez Deniselle MC, Roig P, Lima A, De Nicola AF. Abnormalities of the hippocampus are similar in deoxycorticosterone acetate-salt hypertensive rats and spontaneously hypertensive rats. J Neuroendocrinol 2006; 18:466–474.

    Article  PubMed  CAS  Google Scholar 

  31. De Kloet ER, Joels M, Holsboer F: Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6:463–475.

    Article  PubMed  CAS  Google Scholar 

  32. Sapolsky R, Krey LC, McEwen BS: The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr Rev 1986; 7:284–304.

    Article  PubMed  CAS  Google Scholar 

  33. Tornello S, Orti E, De Nicola AF, Rainbow TC, McEwen BS: Regulation of glucocorticoid receptors in brain by CORT treatment of adrenalectomized rats. Neuroendocrinology 1982; 35:411–417.

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe Y, Gould E, McEwen BS: Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588:341–345.

    Article  PubMed  CAS  Google Scholar 

  35. Dalm S, Enthoven L, Meijer OC, van der Mark MH, Karssen AM, de Kloet ER, Oitzl MS. Age-related changes in hypothalamic-pituitary-adrenal axis activity of male C57BL/6J mice. Neuroendocrinology 2005; 81:372–380.

    Article  PubMed  CAS  Google Scholar 

  36. Sapolsky RM. Glucocorticoids, stress and their adverse neurological effects: relevance to aging. Exp Gerontol 1999; 34:721–723.

    Article  PubMed  CAS  Google Scholar 

  37. Van Eekelen JAM, Rots NY, Sutanto W, de Kloet ER. The effect of aging on stress responsiveness and central corticosteroid receptors in the Brown Norway rat. Neurobiol Aging 1991; 13:159–170.

    Article  Google Scholar 

  38. Wong EYH, Herbert J. Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur J Neurosci 2005; 22:785–792.

    Article  PubMed  Google Scholar 

  39. Herman JP, Schafer MK, Young EA, Thompson R, Doiuglass J, Akil H, Watson SJ. Evidence for hippocampal regulation of neuroendocrine neurones of the hypothalamic-pituitary-adrenocortical axis. J Neurosci 1989; 9:3071–3082.

    Google Scholar 

  40. Magariños AM, Somoza G, De Nicola AF. Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm Metab Res 1987; 19:105–109.

    Article  PubMed  Google Scholar 

  41. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 2005; 25:6243–6250.

    Article  PubMed  CAS  Google Scholar 

  42. Joels M, De Kloet ER. Control of neuronal excitability by corticosteroid hormones. Trends Neurosci 1992; 15:25–30.

    Article  PubMed  CAS  Google Scholar 

  43. McEwen BS, Lambdin LT, Rainbow TC, De Nicola AF. Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology 1986; 43:38–43.

    Article  PubMed  CAS  Google Scholar 

  44. Mondadori C, Hausler A. Aldosterone receptors are involved in the mediation of the memory-enhancing effects of piracetam. Brain Res 1990; 524:203–207.

    Article  PubMed  CAS  Google Scholar 

  45. Ratka A, Sutanto W, Bloemers M, De Kloet ER. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology 1989; 50:117–123.

    Article  PubMed  CAS  Google Scholar 

  46. Ahima R, Krozowski Z, Harlan R. Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. J Comp Neurol 1991; 313:522–538.

    Article  PubMed  CAS  Google Scholar 

  47. Boldyreff B, Wehling M: Rapid aldosterone actions: from the membrane to signalling cascades to gene transcription and physiological effects. J Steroid Biochem Mol Biol 2003; 85:375–381.

    Article  PubMed  CAS  Google Scholar 

  48. Lucas LR, Pompei P, McEwen BS. Effects of deoxycorticosterone acetate and diazepam on neuropeptidergic neurons in rat striatum. Neuroreport 1997; 8:811–816.

    Article  PubMed  CAS  Google Scholar 

  49. Funder JW. Aldosterone, mineralocorticoid receptors and vascular inflammation. Mol Cell Endocrinol 2004; 217:263–269.

    Article  PubMed  CAS  Google Scholar 

  50. Van den Berg DTWM, De Jong W, De Kloet ER. Mineralocorticoid antagonists inhibits stress-induced blood pressure response after repeated daily warming. Am J Physiol 1994; 267:E921–E926.

    PubMed  Google Scholar 

  51. Hashimoto K, Makino S, Hirasawa R, Takao T, Sugawara M, Murakami K, Ono K, Ota Z. Abnormalities in the hypothalamic-pituitary-adrenal axis in spontaneously hypertensive rats during development of hypertension. Endocrinology 1989; 125:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  52. Gomez F, Lahmame A. De Kloet ER, Armario A. Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology 1996; 63:327–337.

    Article  PubMed  CAS  Google Scholar 

  53. Rahmouni K, Barthelmebs M, Grima M, Imbs JL, De Jong W: Involvement of brain mineralocorticoid receptor in salt-enhanced hypertension in spontaneously hypertensive rats. Hypertension 2001; 38:902–906.

    Article  PubMed  CAS  Google Scholar 

  54. Kenyon CJ, De Conti GA, Cupolo NA, Morris DJ. The role of aldosterone in the development of hypertension in spontaneously hypertensive rats. Endocrinology 1981; 109:1841–1845.

    Article  PubMed  CAS  Google Scholar 

  55. Sutanto W, Oitzl MS, Rots NY, Schobitz B, Van den Berg DT, Van Dijken HH, Mos J, Cools AR, Tilders FJ, Koolhaas JM. Corticosteroid receptor plasticity in the central nervous system of various rat models. Endocr Regul 1992; 26:111–118.

    PubMed  CAS  Google Scholar 

  56. Konishi A, Tazawa C, Miki Y, Darnel AD, Suzuki T, Ohta Y, Suzuki T, Tabayashi K, Sasano H. The possible roles of mineralocorticoid receptor and 11 β-hydroxysteroid dehydrogenase type 2 in cardiac fibrosis in the spontaneously hypertensive rat. J Steroid Biochem Mol Biol 2003:85:439–442.

    Article  PubMed  CAS  Google Scholar 

  57. Mirshahi M, Nicolas C, Agarwal MK. Enhanced activation of the mineralocorticoid receptor in genetically hypertensive rats. Biochem Biophys Res Commun 1998; 244:120–125.

    Article  PubMed  CAS  Google Scholar 

  58. Pietranera, L, Saravia, F, Roig, P, Lima, A, De Nicola, AF. Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats. Neuroendocrinology 2004; 80:100–110.

    Article  PubMed  CAS  Google Scholar 

  59. Gould E, Wooley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10:1286–1291.

    PubMed  CAS  Google Scholar 

  60. Goodman Y, Bruce AJ, Cheng B, Mattson MP. Estrogens attenuate and CORT exacerbates excitotoxicity, oxidative injury, and amyloid -peptide toxicity in hippocampal neurons. J Neurochem 1996; 66:1836–1844.

    Article  PubMed  CAS  Google Scholar 

  61. McEwen BS: Estrogen actions throughout the brain. Rec Progr Horm Res 2002; 57:357–370.

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki S, Gerhold LM, Bottner M, Rau SW, Dela Cruz C, Yang E, Zhu H, Yu J, Cashion AB, Kindy MS, Merchenthaler I, Gage FH, Wise PM. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol 2007; 500:1064–1075.

    Article  PubMed  CAS  Google Scholar 

  63. Garcia-Segura LM, Sanz A, Mendez P. Cross-talk between IGF-I and estradiol in the brain: focus on neuroprotection. Neuroendocrinology 2006; 84(4):275–279.

    Article  PubMed  CAS  Google Scholar 

  64. Shughrue PJ, Lane MV, Merchentaler I. Comparative distribution of estrogen receptor 6 and mRNA in the rat central nervous system. J Comp Neurol 1997; 388:507–525.

    Article  PubMed  CAS  Google Scholar 

  65. Gould E, Tanapat P, Rydel T, Hastings N. Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry 2000; 48:715–720.

    Article  PubMed  CAS  Google Scholar 

  66. Tanapat P, Hastings NB, Gould E. Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner. J Comp Neurol 2005; 481:252–265.

    Article  PubMed  CAS  Google Scholar 

  67. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999; 19:5792–5801.

    PubMed  CAS  Google Scholar 

  68. Ormerod BK, Lee TT-L, Galea LAM. Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 2003; 55:247–260.

    Article  PubMed  CAS  Google Scholar 

  69. Isgor C, Watson SJ. Estrogen receptor alpha and beta mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone. Neuroscience 2005; 134:847–856.

    Article  PubMed  CAS  Google Scholar 

  70. Saravia F, Revsin Y, Lux-Lantos V, Beauquis J, Homo-Delarche F, De Nicola AF. Oestradiol restores cell proliferation in dentate gryus and subventricular zone of streptozotocin-diabetic mice. J. Neuroendocrinol 2004; 16:704–710.

    Article  PubMed  CAS  Google Scholar 

  71. Sararavia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol 2006; 26:943–957.

    Article  CAS  Google Scholar 

  72. Saravia FE, Beauquis J, Pietranera L, De Nicola AF. Neuroprotective effects of estradiol in the hippocampus of middle age mice: involvement of neurons and glial cells. Psychoneuroendocrinology 2007; 32:480–492.

    Article  PubMed  CAS  Google Scholar 

  73. De Nicola AF, Saravia FE, Beauquis J, Pietranera L, Ferrini MG. Estrogens and neuroendocrine hypothalamic-pituitary-adrenal axis function. Front Horm Res. 2006; 35:157–168.

    Article  PubMed  CAS  Google Scholar 

  74. Pfeiffer A, Lapointe B, Barden N: Hormonal regulation of type II glucocorticoid receptor messenger ribonucleic acid in rat brain. Endocrinology 1991; 129:2166–2174.

    Article  Google Scholar 

  75. Ferrini M, De Nicola AF: Estrogens up-regulate type I and type II glucocorticoid receptors in brain regions from ovariectomized rats. Life Sci 1991; 48:2593–2601.

    Article  PubMed  CAS  Google Scholar 

  76. Ferrini M, Lima A, De Nicola AF. Estradiol abolishes down-regulation of glucocorticoid receptors in brain. Life Sci 1995; 57:2403–2412.

    Article  PubMed  CAS  Google Scholar 

  77. Lephart ED, Galindo E, Bu LH. Stress (hypothalamic-pituitary-adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets. Neurosci Lett 2003; 342:65–68.

    Article  PubMed  CAS  Google Scholar 

  78. Isgor C, Cecchi M, Kabbai M, Akil H, Watson SJ: Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by CORT. Neuroscience. 2003; 121:837–845.

    Article  PubMed  CAS  Google Scholar 

  79. Perez-Martin M, Salazar V, Castillo C, Ariznavarreta C, Azcoitia I, Garcia-Segura LM, Tresguerres JA. Estradiol and soy extract increase the production of new cells in the dentate gyrus of old rats. Exp Gerontol 2005; 40:450–453.

    Article  PubMed  CAS  Google Scholar 

  80. Darnaudery M, Perez-Martin M, Belizaire G, Maccari S, Garcia-Segura LM. Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobiol Aging 2006; 27:119–127.

    Article  PubMed  CAS  Google Scholar 

  81. Resnick SM, Maki PM, Rapp SR, Espeland MA, Brunner R, Coker LH, Granek IA, Hogan P, Ockene JK, Shumaker SA. Women’s Health Initiative Study of Cognitive Aging Investigators. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab 2006; 91:1802–1810.

    Article  PubMed  CAS  Google Scholar 

  82. Foster TC. Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span. Front Neuroendocrinol 2005; 26:51–64.

    Article  PubMed  CAS  Google Scholar 

  83. Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG. Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994; 51:896–900.

    PubMed  CAS  Google Scholar 

  84. Wang PN, Liao SQ, Liu RS, Liu CY, Chao HT, Lu SR, Yu HY, Wang SJ, Liu HC. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology 2000; 54:2061–2066.

    PubMed  CAS  Google Scholar 

  85. Wise PM. Estrogen therapy: does it help or hurt the adult and aging brain? Insights derived from animal models. Neuroscience 2006; 138:831–835.

    Article  PubMed  CAS  Google Scholar 

  86. Brewer GJ, Reichensperger JD, Brinton RD. Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons. Neurobiol Aging 2006; 27:306–317.

    Article  PubMed  CAS  Google Scholar 

  87. David J-P, Fallet-Bianco C, Vermersch P, Frigard B, Di Menza C, Delacourte A. Viellissement cerebral normal: étude de la réaction gliale. C R Acad Sci Paris 1994; 317:749–753.

    PubMed  CAS  Google Scholar 

  88. Goss JR, Finch CE, Morgan DG. Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol Aging 1991; 12:165–170.

    Article  PubMed  CAS  Google Scholar 

  89. Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE. GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 1993; 14:421–429.

    Article  PubMed  CAS  Google Scholar 

  90. Day JR, Laping NJ, Lampert-Etchells M, Brown SA, O’Callaghan JP, McNeill TH, Finch CE. Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience 1993; 55:435–443.

    Article  PubMed  CAS  Google Scholar 

  91. Garcia-Ovejero D, Veiga S, Garcia-Segura LM, Doncarlos LL. Glial expression of estrogen and androgen receptors after rat brain injury. J Comp Neurol 2002; 450:256–71.

    Article  PubMed  CAS  Google Scholar 

  92. Lei DL, Long JM, Hengemihle J, O’Neill J, Manaye KF, Ingram DK, Mouton PR. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience 2003; 121:659–666.

    Article  PubMed  CAS  Google Scholar 

  93. Azcoitia I, Sierra A, Garcia-Segura LM. Estradiol prevents kainic acid-induced neuronal loss in the rat dentate gyrus. Neuroreport 1998; 9:3075–3079.

    Article  PubMed  CAS  Google Scholar 

  94. Cadacio CL, Milner TA, Gallagher M, Pierce JP. Hilar neuropeptide Y interneuron loss in the aged rat hippocampal formation. Exp Neurol 2003; 183:147–158.

    Article  PubMed  CAS  Google Scholar 

  95. Picazo O, Azcoitia I, Garcia-Segura LM. Neuroprotective and neurotoxic effects of estrogens. Brain Res 2003; 990:20–27.

    Article  PubMed  CAS  Google Scholar 

  96. Howart C, Reed M. Unbiased stereology. Three-Dimensional Measurement in Microscopy. Oxford: Bios Scientific Publishers, 1998, p. 45.

    Google Scholar 

  97. McMahon SS, McDermott KW. Proliferation and migration of glial precursor cells in the developing rat spinal cord. J Neurocytol 2001; 30:821–828.

    Article  PubMed  CAS  Google Scholar 

  98. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003; 467:1–10.

    Article  PubMed  CAS  Google Scholar 

  99. McDonald HY, Wojtowicz JM. Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 2005; 385:70–75.

    Article  PubMed  CAS  Google Scholar 

  100. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol 1999; 413:146–154.

    Article  PubMed  CAS  Google Scholar 

  101. Olariu A, Cleaver KM, Cameron HA. Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 2007; 501:659–667.

    Article  PubMed  Google Scholar 

  102. Behl, C. Estrogen as a neuroprotective hormone. Nat Rev Neurosci 2002; 3:433–442.

    PubMed  CAS  Google Scholar 

  103. McEwen BS, Akama K, Alves S, Brake SG, Bulloch K, Lee S, Li C, Yuen G, Milner, T A. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci USA 2001; 98:7093–7100.

    Article  PubMed  CAS  Google Scholar 

  104. Cardona-Gomez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Rev 2001; 37:320–334.

    Article  PubMed  CAS  Google Scholar 

  105. Scharfman HE, Maclusky NJ. Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci 2005; 28:79–85.

    Article  PubMed  CAS  Google Scholar 

  106. Diaz-Brinton R, Chen S, Montoya M, Hsieh D, Minaya J, Kim J, Chu HP. The women’s health initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 2000; 21:475–496.

    Article  PubMed  CAS  Google Scholar 

  107. Morrison JH, Brinton RD, Schmidt PJ, Gore AC. Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 2006; 26:10332–10348.

    Article  PubMed  CAS  Google Scholar 

  108. Toran-Allerand CD. Estrogen and the brain: beyond ER-alpha and ER-beta. Exp Gerontol 2004; 39:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  109. McEwen BS, Milner TA. Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res Rev 2007; 55:343–355.

    Article  PubMed  Google Scholar 

  110. Mody I, Otis TS, Bragin A, Hsu M, Bizsaki G. GABAergic inhibition of granule cells and hilar al synchrony following ischemia-induced hilar neuronal loss. Neuroscience 1995; 69:139–150.

    Article  PubMed  CAS  Google Scholar 

  111. Stone DJ, Song Y, Anderson CP, Krohn KK, Finch CE, Rozovsky I. Bidirectional transcription regulation of glial fibrillary acidic protein by estradiol in vivo and in vitro. Endocrinology 1998; 139:3202–3209.

    Article  PubMed  CAS  Google Scholar 

  112. Larsson A, Wilhelmsson U, Pekna M, Pekny M. Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(-/-) Vim(-/-) mice. Neurochem Res 2004; 29:2069–2073.

    Article  PubMed  CAS  Google Scholar 

  113. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005; 50:427–434.

    Article  PubMed  Google Scholar 

  114. Rozovsky I, Wei M, Stone DJ, Zanjani H, Anderson CP, Morgan TE, Finch CE. Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin. Endocrinology 2002; 143:636–646.

    Article  PubMed  CAS  Google Scholar 

  115. Flood JF, Mooradian AD, Morley JE. Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 1990; 39:1391–1398.

    Article  PubMed  CAS  Google Scholar 

  116. Liu Z, Gastard M, Verina T, Bora S, Mouton PR, Koliatsos VE. Estrogens modulate experimentally induced apoptosis of granule cells in the adult hippocampus. J Comp Neurol 2001; 441:1–8.

    Article  PubMed  CAS  Google Scholar 

  117. Perfilieva E, Risedal A, Nyberg A, Johansson BB, EWriksson PS. Gender and strain influence on neurogenesis in dentate gyrus of young rats. J Cer Blood Flow Metab 2001; 21:211–217.

    Article  CAS  Google Scholar 

  118. Krugers HS, Maslam S, Korf J, Joels M. The corticosteroid synthesis inhibitor metyrapone prevents hypoxia/ischemia-induced loss of synaptic function in the rat hippocampus. Stroke 2000; 31:1162–1172.

    PubMed  CAS  Google Scholar 

  119. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT: Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998; 31:451–458.

    PubMed  CAS  Google Scholar 

  120. Delano FA, Schmid-Schonbein GW. Enhancement of glucocorticoid and mineralocorticoid receptor density in the microcirculation of the spontaneously hypertensive rat. Mirocirculation 2004; 11:69–78.

    Article  CAS  Google Scholar 

  121. Toran-Allerand CD, Tinnikov AA, Singh RJ, Nethrapalli IS. 17alpha-estradiol: a brain-active estrogen? Endocrinology 2005; 146:3843–3850.

    Article  PubMed  CAS  Google Scholar 

  122. Romer W, Oettel M, Menzenbach B, Droescher P, Schwarz S. Novel estrogens and their radical scavenging effects, iron-chelating, and total antioxidative activities: 17 alpha-substituted analogs of delta 9(11)-dehydro-17 beta-estradiol. Steroids 1997; 62:688–694.

    Article  PubMed  CAS  Google Scholar 

  123. Honjo H, Iwasa K, Fushiki S, Hosoda T, Tatsumi H, Mihara M, Hirasugi Y, Oida M, Kariya K, Kikuchi N, Kawata M. Estrogen and non-feminizing estrogen for Alzheimer’s disease. Endocr J 2003; 50:361–367.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

De Nicola, A.F., Pietranera, L., Beauquis, J., Homo-Delarche, F., Saravia, F.E. (2008). Involvement of Neuroactive Steroids in Hippocampal Disorders: Lessons from Animal Models. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics