Skip to main content

Plasmonics of Gold Nanorods. Considerations for Biosensing

  • Conference paper
Nanomaterials for Application in Medicine and Biology

Abstract

In this chapter, we explore the sensitivity of gold nanorods toward changes in the dielectric constant of the surrounding medium. Experimental data for pure and silica-coated nanorods with varying shell thickness are compared to calculations based on the boundary element method (BEM). They indicate that anisotropy and sharp tips make nanoparticles more environmentally sensitive. We also find that sensitivity decreases as silica shell thickness increases, as expected from a dielectric screening effect. Even when coated with thin shells, gold nanorods are found to be excellent candidates for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1996).

    Google Scholar 

  2. Special issue on Synthesis and Plasmonic Properties of Nanostructures, MRS Bull. 30(5) (2005).

    Google Scholar 

  3. L. M. Liz-Marzán, Tailoring surface plasmon resonance through the morphology and assembly of metal nanoparticles, Langmuir 22(1), 32–41 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

    Article  CAS  Google Scholar 

  5. Y. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15(5), 353–389 (2003).

    Article  CAS  Google Scholar 

  6. S. H. Im, T. T. Lee, B. Wiley, and Y. Xia, Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity, Angew. Chem., Int. Ed. 44(14), 2154–2157 (2005).

    Article  CAS  Google Scholar 

  7. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprims, J. Am. Chem. Soc. 127(15), 5312–5313 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. I. Pastoriza-Santos and L. M. Liz-Marzán, Synthesis of silver nanoprisms in DMF, Nano Lett. 2(8), 903–905 (2002).

    Article  ADS  CAS  Google Scholar 

  9. C. L. Nehl, H. Liao, and J. H. Hafner, Optical properties of star-shaped gold nanoparticles, Nano Lett. 6(4), 683–688 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  10. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods, J. Phys. Chem. B 103(40), 8410–8426 (1999).

    Article  CAS  Google Scholar 

  11. M. Faraday, Philos. Trans. Royal Soc. London 147, 145 (1857); A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89(8), 1861–1873 (1989); U. Kreibig, Systems of small metal particles: optical properties and their structure dependences. Z. Phys. D 3(2–3), 239–249 (1986); C. F. Bohren, D. F. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983); P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12(3), 788–800 (1996).

    Article  Google Scholar 

  12. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, and N. J. Halas, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci., USA 100(23), 13549–13554 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks, and R. P. van Duyne, Biological applications of localised surface plasmonic phenomenae, IEEE Proc. Nanobiotechnol. 152(1), 13–32 (2005).

    Article  CAS  Google Scholar 

  14. A. J. Haes and R. P. van Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124(35), 10596–10604 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, A whole blood immunoassay using gold nanoshells, Anal. Chem. 75(10), 2377–2381 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering, Nano Lett. 3(7), 935–938 (2003).

    Article  ADS  CAS  Google Scholar 

  17. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nanorice: a hybrid plasmonic nanostructure, Nano Lett. 6(4), 827–832 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  18. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: application in biological imaging and biomedicine, J. Phys. Chem. B 110(14), 7238–7248 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. F. J. García de Abajo and A. Howie, Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics, Phys. Rev. Lett. 80, 5180–5183 (1998).

    Article  ADS  Google Scholar 

  20. F. J. García de Abajo and A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics, Phys. Rev. B 65(11), 115418–1-17 (2002).

    Article  ADS  CAS  Google Scholar 

  21. A. Sánchez-Iglesias, I. Pastoriza-Santos, J. Pérez-Juste, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, Synthesis and optical properties of gold nanodecahedra with size control, Adv. Mater. 18(19), 2529–2534 (2006).

    Article  CAS  Google Scholar 

  22. B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater. 15(10), 1957–1962 (2003).

    Article  CAS  Google Scholar 

  23. I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, Silica-coating and hydrophobation of CTAB-stabilized gold nanorods, Chem. Mater. 18(10), 2465–2467 (2006).

    Article  CAS  Google Scholar 

  24. N. A. Kotov, I. Dekany, and J. H. Fendler, Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films, J. Phys. Chem. 99, 13065–13069 (1995).

    Article  CAS  Google Scholar 

  25. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N A. Kotov, and L. M. Liz-Marzán, One-Pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly, Langmuir 16(6), 2731–2735 (2000).

    Article  CAS  Google Scholar 

  26. A. P. Alivisatos, K. P. Jonson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and G. P. Schultz, Organization of ‘Nanocrystal Molecules’ using DNA, Nature 382, 609–611 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  27. R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz, What controls the melting properties of DNA-linked gold nanoparticles assemblies?, J. Am. Chem. Soc. 125(6), 1643–1654 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. L. A. Lyon, M. D. Musick, and M. J. Natan, Colloidal Au-enhanced surface plasmon resonance immunosensing, Anal. Chem. 70(24), 5177–5183 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. S. Liu and M. Han, Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes, Adv. Funct. Mater. 15(6), 961–967 (2005).

    Article  CAS  Google Scholar 

  30. J. E. Smith, L. Wang, and W. Tan, Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis, Trends Anal. Chem. 25(9), 848–855 (2006).

    Article  CAS  Google Scholar 

  31. P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Phys. Rev. B 6(12), 4370–4379 (1972).

    Article  ADS  CAS  Google Scholar 

  32. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Liz-Marzán, L.M., Pérez-Juste, J., Pastoriza-Santos, I. (2008). Plasmonics of Gold Nanorods. Considerations for Biosensing. In: Giersig, M., Khomutov, G.B. (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6829-4_9

Download citation

Publish with us

Policies and ethics