Skip to main content

Polyelectrolyte-Mediated Transport of Doxorubicin Through the Bilayer Lipid Membrane

  • Conference paper
Nanomaterials for Application in Medicine and Biology

Abstract

A model is developed for the effect of ionic polymers on the transport of doxorubicin, an antitumor drug, through a bilayer membrane. Accordingly, a protonated (cationic) form of doxorubicin binds to an anionic polymer, poly(acrylic acid), the resulting complex being several hundred nanometers in size. Nevertheless, large complex species associate with neutral egg lecithin liposomes by means of hydrophobic attraction between the doxorubicin and the liposome bilayer. Then, the doxorubicin enters the liposome interior which has been imparted with an acidic buffer to protonate the doxorubicin. The rate of transmembrane Dox permeation decreases when elevating the polyacid-to-doxorubicin ratio. A cationic polymer, polylysine, being coupled with liposomes containing the negative lipid cardiolipin, accelerates membrane transport of doxorubicin with the maximum rate at a complete neutralization of the membrane charge by an interacting polycation. The effect of a polycation on doxorubicin transport becomes more pronounced as small negative liposomes (60–80 nm in diameter) are changed to larger ones (approx. 600 nm in diameter). An opportunity thus opens up for the manipulation of the kinetics of drug uptake by cells and, ultimately, the control of the pharmaceutical action of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Suzuki, D. Nakai, T. Seita, and Y. Sugiyama, Design of a drug delivery system for targeting based on pharmacokinetic consideration, Adv. Drug Del. Rev. 19(3), 335–357 (1996).

    Article  CAS  Google Scholar 

  2. A. V. Kabanov and T. Okano, Challenges in polymer therapeutics: state of the art and prospects of polymer drugs, Adv. Exp. Med. Biol. 519, 1–27 (2003).

    Article  CAS  Google Scholar 

  3. V. P. Torchilin, Structure and design of polymeric surfactant-based drug delivery systems, J. Control. Release 73(2), 137–172 (2001).

    Article  CAS  Google Scholar 

  4. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y Sakurai, S. Fukushima, K. Okamoto, and G.S. Kwon, Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance, J. Control. Release 64(1–3), 143–153 (2000).

    Article  CAS  Google Scholar 

  5. L. Bromberg and V. Alakhov, Effects of polyether-modified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control. Release. 88(1), 11–22 (2003).

    Article  CAS  Google Scholar 

  6. B. K. Kishore, Z. Kallay, P. Lambricht, G. Laurent, and P. M. Tulkens, Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. I. Polyaspartic acid binds gentamicin and displaces it from negatively charged phospholipid layers in vitro, Pharmacol. Exp. Ther. 255(2), 867–874 (1990).

    CAS  Google Scholar 

  7. N. Konar and C. Kim, Drug release from drug-polyanion complex tablets: poly(acrylamido-2-methyl-1-propanesulfonate sodium -co- methyl methacrylate), J.Control. Release 57(2), 141–150 (1999).

    Article  CAS  Google Scholar 

  8. T. Oda, F. Sato, and H. Maeda, Facilitated internalization of neocarzinostatin and its lipophilic polymer conjugate, SMANCS, into cytosol in acidic pH, J. Natl. Cancer Inst. 79(6), 1205–1211 (1987).

    CAS  Google Scholar 

  9. R. Welti and M. Glaser, Lipid domains in model and biological membranes, Chem. Phys. Lipids 73(1–2), 121–137 (1994).

    Article  CAS  Google Scholar 

  10. P. M. Macdonald, K. J. Crowell, C. M. Franzin, P. Mitrakos, and D. J. Semchyschyn, Polyelectrolyte-induced domains in lipid bilayer membranes: the deuterium NMR perspective, Biochem. Cell Biol. 76(2–3), 452–464 (1998).

    Article  CAS  Google Scholar 

  11. A. A. Yaroslavov, A. A. Efimova, V. I. Lobyshev, and V. A. Kabanov, Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation, Biochim. Biophys. Acta 1560(1–2), 14–24 (2002).

    CAS  Google Scholar 

  12. A. A. Yaroslavov, V. Ye. Koulkov, A. S. Polynsky, B. A. Baibakov, and V. A. Kabanov, A polycation causes migration of negatively charged phospholipids from the inner to outer leaflet of the liposomal membrane, FEBS Lett. 340, 121–123 (1994).

    Article  CAS  Google Scholar 

  13. S. Lee, T. Iwata, H. Oyagi, H. Aoyagi, M. Ohno, K. Anzai, Y. Kirino, and G. Sugihara, Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability, Biochim. Biophys. Acta 1151, 76–82 (1993).

    Article  CAS  Google Scholar 

  14. O. O. Glazunova, E. A. Korepanova, V. S. Efimov, A. I. Smirnov, and Yu. A.Vladimirov, A synthetic polycation, a copolymer of 1-vinyl-3-methylimidazole iodide with maleic acid diethyl ester, increases passive ionic permeability in erythrocyte membranes modified by fatty acids, Membr. Cell Biol. 12(3), 401–409 (1998).

    CAS  Google Scholar 

  15. A. A. Yaroslavov, O. Ye. Kuchenkova, I. B. Okuneva, N. S. Melik-Nubarov, N. O. Kozlova, V. I. Lobyshev, V. A. Kabanov, and F. M. Menger, Effect of polylysine on structure and permeability of negative vesicular membrane, Biochim. Biophys. Acta 1611(1–2), 44–54 (2003).

    CAS  Google Scholar 

  16. N. Oku, N. Yamaguchi, N. Yamaguchi, S. Shibamoto, F. Ito, and M. Nango, The fusogenic effect of synthetic polycations on negatively charged lipid vesicles, J. Biochem. 100(4), 935–944 (1986).

    CAS  Google Scholar 

  17. A. E. Gad, B. L. Silver, and G. D. Eytan, Polycation-induced fusion of negatively-charged vesicles, Biochim. Biophys. Acta 690(1), 124–132 (1982).

    Article  CAS  Google Scholar 

  18. R. R. C. New, in: Liposomes: A Practical Approach, edited by R.R.C. New (Oxford University Press, Oxford, 1990), pp. 33–104.

    Google Scholar 

  19. O. O. Krylova, N. S. Melik-Nubarov, G. A. Badun, A. L. Ksenofontov, F. M. Menger, and A. A. Yaroslavov, Pluronic L61 accelerates flip-flop and transbilayer doxorubicin permeation, Chem. Eur. J. 9(16), 3930–3936 (2003).

    Article  CAS  Google Scholar 

  20. M. V. Kitaeva, N. S. Melik-Nubarov, F. M. Menger, and A. A. Yaroslavov, Doxorubicin-poly(acrylic acid) complexes: interaction with liposomes, Langmuir 20(16), 6575–6579 (2004).

    Article  CAS  Google Scholar 

  21. T. Soderlund, A. Jutila, P. K. Kinnunen, and A. Walter, Continuous mixing experiments allow to determine the size of binding sites for anthracyclines complexed to DNA, Biomed. Biochim. Acta 44(9), 1321–1327 (1985).

    Google Scholar 

  22. C. Heywang, M. S.-P. Chazalet, M. C. Masson, and J. Bolard, Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers: a surface-enhanced resonance Raman scattering study, Biophys. J. 75(5), 2368–2381 (1998).

    Article  Google Scholar 

  23. C. Cera and M. Palumbo, Anti-cancer activity of anthracycline antibiotics and DNA condensation, Anticancer Drug Des.5(3), 265–71 (1990).

    CAS  Google Scholar 

  24. P. R. Harrigan, K. F. Wong, T. E. Redelmeier, J. J. Wheeler, and P. R. Cullis, Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients, Biochim. Biophys. Acta 1149(2), 329–338 (1993).

    Article  CAS  Google Scholar 

  25. J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology (Scientific American Books, New York, 1990).

    Google Scholar 

  26. N. O. Kozlova, I. B. Bruskovskaya, I. B. Okuneva, N. S Melik-Nubarov, A. A. Yaroslavov, V. A. Kabanov, and F. M. Menger, Interaction of a cationic polymer with negatively charged proteoliposomes, Biochim. Biophys. Acta 1514(1), 139–151 (2001).

    Article  CAS  Google Scholar 

  27. T. M. Allen and C. Hansen, Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1068(2), 133–141 (1991).

    Article  CAS  Google Scholar 

  28. P. Srinath, M. C. Chary, S. P. Vyas, and P. W. Diwan, Long-circulating liposomes of indomethacin in arthritic rats–A biodisposition study, Pharm. Acta Helv. 74(4), 399–404 (2000).

    Article  CAS  Google Scholar 

  29. A. A. Yaroslavov, E. G. Yaroslavova, A. A. Rakhnyanskaya, F. M. Menger, and V.A. Kabanov, Modulation of interaction of polycations with negative unilamellar lipid vesicles, Colloids Surf. B 16(1), 29–43 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Yaroslavov, A., Kitaeva, M., Melik-Nubarov, N., Menger, F. (2008). Polyelectrolyte-Mediated Transport of Doxorubicin Through the Bilayer Lipid Membrane. In: Giersig, M., Khomutov, G.B. (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6829-4_13

Download citation

Publish with us

Policies and ethics