Skip to main content

Soil Erosion Studies in Northern Ethiopia

  • Chapter
Land Use and Soil Resources

Soil erosion is one of the biggest global environmental problems resulting in both on-site and off-site effects. The economic implication of soil erosion is more serious in developing countries because of lack of capacity to cope with it and also to replace lost nutrients. These countries have also high population growth which leads to intensified use of already stressed resources and expansion of production to marginal and fragile lands. Such processes aggravate erosion and productivity declines, resulting in a population-poverty-land degradation cycle.

Rapid population growth, cultivation on steep slopes, clearing of vegetation, and overgrazing are the main factors that accelerate soil erosion in Ethiopia. The annual rate of soil loss in the country is higher than the annual rate of soil formation rate. Annually, Ethiopia losses over 1.5 billion tons of topsoil from the highlands to erosion which could have added about 1.5 million tons of grain to the country’s harvest. This indicates that soil erosion is a very serous threat to food security of people and requires urgent management intervention.

To circumvent the impacts of erosion, it is important to know the severity of the problem and the main controlling factors. Since different portions of the landscape vary in sensitivity to erosion due to differences in their geomorphological, geological, and vegetation attributes, it is also necessary to identify high erosion risk areas in order to plan site-specific management interventions. Depending on the prevailing erosion processes and controlling factors, the efficiency of soil conservation measures may vary. This calls for the assessment of the soil conservation potential of different management practices. This study was conducted in northern Ethiopia in order to assess rates of soil loss, investigate controlling factors, and analyze spatial patterns and management alternatives. Section 5.1 reviews the impacts of soil erosion at global and regional scale. Section 5.2 discusses the magnitude of soil erosion in northern Ethiopia based on reservoir survey and Section 5.3 explores its major determinant factors. Section 5.4 applies soil erosion models to identify high erosion risk areas for targeted management intervention and Section 5.5 simulates the potentials of different land management/soil conservation techniques in reducing soil loss of selected catchments. Section 5.6 summarizes the major findings of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksoy, H., & Kavvas, M. L., (2005). A review of hillslope and watershed scale erosion and sediment transport models. Catena, 64, 247–271.

    Article  Google Scholar 

  • Borin, M., Vianello, M., Morari, F., & Zanin, G. (2005). Effectiveness of buffer strips in removing pollutants in runoff from cultivated field in North-East Italy. Agriculture, Ecosystems and Environment, 105, 101–114.

    Article  CAS  Google Scholar 

  • Costin, A. B. (1980). Runoff and soil nutrient losses from an improved pasture at Ginninderra, Southern Tablelands, New South Wales. Australian Journal of Agricultural Research, 31, 533–546.

    Article  CAS  Google Scholar 

  • Dearing, J. A., & Foster, D. L. (1993). Lake sediments and geomorphological processes: Some thoughts. In J. McManus & R. W. Duck (Eds.), Geomorphology and sedimentology of lakes and reservoirs (pp. 73–92). Chichester, UK: Wiley.

    Google Scholar 

  • De Roo, A. P. J. (1998). Modelling runoff and sediment transport in catchments using GIS. Hydrological Processes, 12, 905–922.

    Article  Google Scholar 

  • den Biggelaar, C., Lal, R., Wiebe, K., Eswaran, H., Breneman, V., & Reich, P. (2004). The global impact of soil erosion on productivity II: Effect on crop yields and production over time. Advances in Agronomy, 81, 49–95.

    Article  Google Scholar 

  • Desmet, P. J. J., & Govers, G. (1996). Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems, 10, 311–331.

    Google Scholar 

  • Dickinson, A., & Collins, R. (1998). Predicting erosion and sediment yield at the catchment scale. In F. W. T. Penning de Vries, F. Agus & J. Kerr (Eds.), Soil erosion at multiple scales: Principles and methods for assessing causes and impacts (pp. 317–342). Wallingford, UK: CABI, in association with the International Board for Soil Research and Management.

    Google Scholar 

  • Dregne, H. E. (1990). Erosion and soil productivity in Africa. Journal of Soil and Water Conservation, 45(4), 431–436.

    Google Scholar 

  • El-Swaify, S. A. (1994). State-of-the-art for assessing soil and water conservation needs and technologies. In T. L. Napier, S. M. Camboni & S. A. El-Swaify (Eds.), Adopting conservation on the farm (pp. 13–27). Ankeny, IA: Soil and Water Conservation Society of America.

    Google Scholar 

  • Erskine, W. D., & Saynor, M. J. (1995). The influence of waterway management on water quality with particular reference to suspended solids, phosphorus and nitrogen. Victoria, East Melbourne: Department of Conservation and Natural Resources.

    Google Scholar 

  • Eswaran, H., Lal, R., & Reich, P. F. (2001). Land degradation: An overview. In E. M. Bridges, I. D. Hannam, L. R. Oldeman, F. W. T. Pening de Vries, S. J. Scherr & S. Sompatpanit (Eds.), Responses to land degradation. Proceedings of 2nd International Conference on Land Degradation and Desertification. Khon Kaen, Thailand. New Delhi, India: Oxford Press.

    Google Scholar 

  • Eweg, H., & Van Lammeren, R. (1996). The application of a GIS at the rehabilitation of degraded and degrading areas. A case study in the highlands of Tigray, Ethiopia. Wageningen, The Netherlands: Centre for Geographical Information Processing, Agricultural University.

    Google Scholar 

  • FAO. (1986). Ethiopian highland reclamation study. Ethiopia. Final report. Rome: FAO.

    Google Scholar 

  • Fargas, D., Martínez-Casasnovas, J. A., & Poch, R. M. (1997). Identification of critical sediment source areas at regional level. Physics and Chemistry of the Earth, 22, 355–359.

    Article  Google Scholar 

  • Foster, I. D. L. (1995). Lake and reservoir bottom sediments as sources of soil erosion and sediment transport data in the UK. In I. D. L. Foster, M. M. Gurnell & B. Webb (Eds.), Sediment and water quality in river catchments (pp. 265–283). Chichester, UK: Wiley.

    Google Scholar 

  • Grayson, R., & Blöschl, G. (2000). Spatial modelling of catchment dynamics. In R. Grayson & G. Blöschl (Eds.), Spatial patterns in catchment hydrology: Observations and modelling. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harden, C. P. (1993). Land use, soil erosion, and reservoir sedimentation in an Andean drainage basin in Ecuador. Mountain Research and Development, 13, 177–184.

    Article  Google Scholar 

  • Hessel, R., Messing, I., Liding, C., Ritsema, C., & Stolte, J. (2003). Soil erosion simulations of land use scenarios for a small Loess Plateau catchment. Catena, 54, 289–302.

    Article  Google Scholar 

  • Hurni, H. (1983a). Soil formation rates in Ethiopia. Working paper 2. Addis Ababa: Ethiopian Highlands Reclamation Studies.

    Google Scholar 

  • Hurni, H. (1983b). Soil erosion and soil formation in agricultural ecosystems in Ethiopia and Northern Thailand. Mountain Research and Development, 3, 131–142.

    Article  Google Scholar 

  • Hurni, H. (1985). Erosion-productivity-conservation systems in Ethiopia. Soil Conservation Research Project (SCRP). In I. P. Sentis (Ed.), Soil conservation and productivity (pp. 654–674). Proceedings of 4th International Conference on Soil Conservation, Venezuela.

    Google Scholar 

  • Hurni, H. (1990). Degradation and conservation of soil resources in the Ethiopian highlands. Mountain and Research Development, 8, 123–130.

    Article  Google Scholar 

  • Hurni, H. (1993). Land degradation, famine, and land resource scenarios in Ethiopia. In D. Pimentel (Ed.), World soil erosion and conservation. Cambridge, Cambridge University Press.

    Google Scholar 

  • Hurni, H., & Perich, I. (1992). Towards a Tigray regional environmental and economic strategy (TREES): A contribution to the symposium on combating environmental degradation in Tigray, Ethiopia. Berne: Group for Development and Environment, Institute of Geography, University of Bern, Switzerland.

    Google Scholar 

  • Jetten, V., Govers, G., & Hessel, R. (2003). Erosion models: Quality of spatial predictions. Hydrological Processes, 17, 887–900.

    Article  Google Scholar 

  • Jiang, D., Qi, L., & Tan, J. (1980). Soil erosion and conservation in the Wuding River Valley, China. In R. P. C. Morgan (Ed.), Soil conservation: Problems and prospects (pp. 461–479). Chichester, UK: Wiley.

    Google Scholar 

  • Julien, P. Y., & Simons, D. B. (1985). Sediment transport capacity of overland flow. Transactions of the American Society of Agricultural Engineers, 28, 755–762.

    Google Scholar 

  • Kirkby, M. J., Le Bissonais, Y., Coulthard, T. J., Daroussin, J., & McMahon, M. D. (2000). The development of land quality indicators for soil degradation by water erosion. Agriculture, Ecosystems and Environment, 81, 125–136.

    Article  Google Scholar 

  • Laflen, J. M., & Roose, E. (1998). Methodologies for assessment of soil degradation due to water erosion. In R. Lal, W. H. Blum, C. Valentine & B. A. Stewart (Eds.), Advances in soil science (pp. 31–55). New York: CRC Press.

    Google Scholar 

  • Laflen, J. M., Foster, G. R., & Onstad, C. A. (1985). Simulation of individual-storm soil loss for modeling the impact of soil erosion on crop productivity. In S. A. El-Swaify, W. C. Moldernhauer & A. Lo (Eds.), Soil erosion and conservation (pp. 285–295). Ankeny, IA: Soil and Water Conservation Society of America.

    Google Scholar 

  • Lal, R. (1994). Soil erosion by wind and water: Problems and prospects. In R. Lal (Ed.), Soil erosion research methods (pp. 1–9). Ankeny, IA: Soil and Water Conservation Society of America.

    Google Scholar 

  • Lal, R. (1995). Erosion-crop productivity relationship for soils in Africa. American Journal of Social Science Society, 59, 661–667.

    Article  CAS  Google Scholar 

  • Lane, L. J., Renard, K. G., Foster, G. R., & Laflen, J. M. (1997). Development and application of modern soil erosion prediction technology: The USDA experience. Eurasian Soil Science, 30(5), 531–540.

    Google Scholar 

  • Lawrence, P., & Dickinson, A. (1995). Soil erosion and sediment yield: A review of sediment data from rivers and reservoirs (Report prepared under FAO writers’ contract). Wallingford, UK: Overseas Development Unit, HR Wallingford Ltd.

    Google Scholar 

  • Lu, X. X., & Higgitt, D. L. (1999). Sediment yield variability in the Upper Yangtze, China. Earth Surface Processes and Landforms, 24, 1077–1093.

    Article  Google Scholar 

  • Machado, M. J., Perez-Gonzalez, A., & Benito, G. (1996). Assessment of soil erosion using a predictive model. In E. Feoli (Ed.), Rehabilitation of degrading and degraded areas of Tigray, Northern Ethiopia (pp. 237–248). Trieste, Italy: Department of Biology, University of Trieste.

    Google Scholar 

  • Maidment, D. R. (1996). Environmental modeling with GIS. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Johnston, D. Maidment & S. Glendinning (Eds.), GIS and environmental modeling: CO, Progress and Research Issues (pp. 315–323). Fort Collins, CO: GIS World.

    Google Scholar 

  • Merritt, W. S., Letcher, R. A., & Jakemna, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18, 761–799.

    Article  Google Scholar 

  • Mitas, L., & Mitasova, H. (1998). Distributed soil erosion simulation for effective erosion prevention. Water Resources Research, 34, 505–516.

    Article  Google Scholar 

  • Mitasova, H., Hofierka, J., Zloch, M., & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10, 629–641.

    Google Scholar 

  • Mitasova, H., Mitas, L., & Brown, W. M. (2001). Multiscale simulation of land use impact on soil erosion and deposition patterns. In D. E. Stott, R. H. Montar & G. C. Steinhardt (Eds.), Sustaining the global farm. The 10th International Soil Conservation Organization (24–29, 1999). West Lafayette, IA: Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.

    Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrological Processes, 5, 3–30.

    Article  Google Scholar 

  • Moore, I.D., Wilson, J.P., & Ciesiolka, C.A. (1992). Soil erosion prediction and GIS: Linking theory and practice. In S. H. Luk & J. Whitney (Eds.), Proceedings of the International Conference on the application of geographical information systems to soil erosion management (pp. 31–48). Toronto: University of Toronto Press.

    Google Scholar 

  • Morgan, R. P. C. (1995). Soil erosion and conservation, 2nd ed. New York: Wiley.

    Google Scholar 

  • Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchere, V., & van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61, 131–154.

    Article  Google Scholar 

  • Nyssen, J. (2001). Erosion processes and soil conservation in a tropical mountain catchment under threat of anthropogenic desertification – a case study from Northern Ethiopia. PhD Thesis. Faculteit Wetenschappen. Department Goegrafie – Geologie, Katholieke University Leuven, Belgium.

    Google Scholar 

  • Oldeman, L.R. (1994). The global extent of soil degradation. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use. Wallingford, UK: CABI.

    Google Scholar 

  • Phippen, S., & Wohl, E. (2003). An assessment of land use and other factors affecting sediment loads in the Rio Puerco watershed, New Mexico. Geomorphology, 52, 269–287.

    Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.

    Article  CAS  Google Scholar 

  • Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena, 50, 91–133.

    Article  Google Scholar 

  • Reij, C., Scoones, I., & Toulmin, C. (1996). Sustaining the soil: Indigenous soil and water conservation in Africa. London: Earthscan.

    Google Scholar 

  • Renard, K. G., & Foster, G. R. (1983). Soil conservation: Principles of erosion by water. In H. E. Degne & W. O. Willis (Eds.), Dryland agriculture. Agronomy Monograph, 23, 156–176. Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Rustomji, P., & Prosser, I. (2001). Spatial patterns of sediment delivery to valley floors: Sensitivity to sediment transport capacity and hillslope hydrology relations. Hydrological Processes, 15, 1003–1018.

    Article  Google Scholar 

  • Sertsu, S. (2000). Degraded soils of Ethiopia and their management. Proceedings of the FAO/ISCW expert consultation on management of degraded soils in Southern and East Africa. 2nd Network Meeting, 18–22 September 2000. Pretoria.

    Google Scholar 

  • Shibru, D., Rieger, W., & Strauss, P. (2003). Assessment of gully erosion using phtotogrammetric techniques in Eastern Ethiopia. Catena, 50, 273–291.

    Article  Google Scholar 

  • Stott, A. P., Butcher, D. P., & Pemberton, T. J. L. (1988). Problems in the use of reservoir sedimentation data to estimate erosion rates. Zeitschrift für Geomorphologie, 30, 205–226.

    Google Scholar 

  • Taddese, G. (2001). Land degradation: A challenge to Ethiopia. Environmental Management, 27, 815–824.

    Article  CAS  Google Scholar 

  • Tamene, L., Park, S., Dikau, R., & Vlek, P. L. G. (2006). Analysis of factors determining sediment yield variability in the highlands of Northern Ethiopia. Geomorphology, 76, 76–91.

    Article  Google Scholar 

  • Tilahun, Y., Esser, K., Vägen, T. G., & Haile, M. (2002). Soil conservation in Tigray, Ethiopia. Norway: Äs, Agricultural University of Norway, Noragric, Report No.5.

    Google Scholar 

  • Trimble, S. W. (1974). Man-induced soil erosion in the southern Piedmont, 1700–1970. Ankeny, IA: Soil Conservation Society of America.

    Google Scholar 

  • Verstraeten, G., & Poesen, J. (2001). Factors controlling sediment yield from small intensity cultivated catchments in a temperate humid climate. Geomorphology, 40, 123–144.

    Article  Google Scholar 

  • Verstraeten, G., Van Oost, K., Van Rompaey, A., Poesen, J., & Govers, G. (2002). Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 19, 386–394.

    Google Scholar 

  • Vought, L. B., Pinay, G., Fuglsang, A., & Ruffinoni, C. (1995). Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape and Urban Planning, 31, 323–331.

    Article  Google Scholar 

  • Walling, D. E., & Webb, D. W. (1981). The reliability of suspended sediment load data: Erosion and sediment transport measurement. Proceedings of the Florence Symposium, Florence. International Association of Hydrological Sciences, 177–194.

    Google Scholar 

  • Wilson, J., & Gallant, C. (2000). Digital terrain analysis. In J. Wilson & J. Gallant (Eds.), Terrain analysis: Principles and applications. New York: Wiley.

    Google Scholar 

  • Wilson, J., & Lorang, M. S. (1999). Spatial models of soil erosion and GIS. In A. S. Fotheringham & M. Wegener (Eds.), Spatial models and GIS: New potential and new models. London: Taylor & Francis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Tamene, L., Vlek, P.L.G. (2008). Soil Erosion Studies in Northern Ethiopia. In: Braimoh, A.K., Vlek, P.L.G. (eds) Land Use and Soil Resources. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6778-5_5

Download citation

Publish with us

Policies and ethics