Skip to main content

Skeletal Muscle Reconstitution During Limb and Tail Regeneration in Amphibians: Two Contrasting Mechanisms

  • Chapter
Skeletal Muscle Repair and Regeneration

Part of the book series: Advances in Muscle Research ((ADMR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blau HM, Chiu CP, Pavlath GK, Webster C (1985a) Muscle gene expression in heterokaryons. Adv Exp Med Biol 182:231–247

    CAS  Google Scholar 

  • Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985b) Plasticity of the differentiated state. Science 230:758–766

    Article  CAS  Google Scholar 

  • Bryant SV, Iten LE (1976) Supernumerary limgs in amphibians: experimental production in Notophthalmus viridescens and a new interpretation of their formation. Dev Biol 50:212–234

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1967) Studies on the mechanism of implant-induced supernumerary limb formation in Urodeles. I. The histology of supernumerary limb formation in the adult newt, Triturus viridescens. J Exp Zool 164:227–242

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (2003) Muscle regeneration in amphibians and mammals: passing the torch. Dev Dyn 226:167–181

    Article  PubMed  Google Scholar 

  • Chen Y, Lin G, Slack JM (2006) Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 133:2303–2313

    Article  PubMed  CAS  Google Scholar 

  • Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P, Brockes JP (1988) Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool 247:77–91

    Article  PubMed  CAS  Google Scholar 

  • Gargioli C, Slack JM (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679

    Article  PubMed  CAS  Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York

    Google Scholar 

  • Hay ED (1959) Electron Microscopic Observations of Muscle Dedifferentiation in Regenerating Amblystoma Limbs. Developmental Biology 1:555–585

    Article  Google Scholar 

  • Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59

    Article  PubMed  CAS  Google Scholar 

  • Holtzer S (1956) The inductive activiy of the spinal cord in urodele tail regeneration. Journal of Morphology 99:1–39

    Article  Google Scholar 

  • Imokawa Y, Brockes J P (2003) Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol 13:877–881

    Article  PubMed  CAS  Google Scholar 

  • Iujvidin S, Fuchs O, Nudel U, Yaffe D (1990) SV40 immortalizes myogenic cells: DNA synthesis and mitosis in differentiating myotubes. Differentiation 43:192–203

    Article  PubMed  CAS  Google Scholar 

  • Koshiba K, Kuroiwa A, Yamamoto H, Tamura K, Ide H (1998) Expression of Msx genes in regenerating and developing limbs of axolotl. J Exp Zool 282 :703–714

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Velloso CP, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218:125–136

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Velloso, CP, Imokawa Y, Brockes, JP (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol 2:1168–1176

    Article  CAS  Google Scholar 

  • Lentz, TL (1969) Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am J Anat 124:447–479

    Article  PubMed  CAS  Google Scholar 

  • Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90:7230–7234

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Turner RN (1978) Supernumerary limbs in the axolotl. Nature 273:232–235

    Article  PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • McGann CJ, Odelberg SJ, Keating MT (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci U S A 98:13699–13704

    Article  PubMed  CAS  Google Scholar 

  • Morrison JI, Loof S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    Article  PubMed  CAS  Google Scholar 

  • Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Popiela H (1976) Muscle satellite cells in urodele amphibians: faciliatated identification of satellite cells using ruthenium red staining. J Exp Zool 198:57–64

    Article  PubMed  CAS  Google Scholar 

  • Reginelli AD, Wang YQ, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076

    PubMed  CAS  Google Scholar 

  • Ryffel GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31:e44–e57

    Article  PubMed  Google Scholar 

  • Schnapp E, Tanaka EM (2005) Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev Dyn 232:162–170

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Brockes JP (2002) Thrombin activation of S-phase reentry by cultured pigmented epithelial cells of adult newt iris. Exp Cell Res 281:101–106

    Article  PubMed  CAS  Google Scholar 

  • Song K, Wang Y, Sassoon D (1992) Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360:477–481

    Article  PubMed  CAS  Google Scholar 

  • Stocum D (1995) “Wound repair, regeneration, and artificial tissues.” Springer-Verlag, New York

    Google Scholar 

  • Straube WL, Brockes JP, Drechsel DN, Tanaka EM (2004) Plasticity and reprogramming of differentiated cells in amphibian regeneration: partial purification of a serum factor that triggers cell cycle re-entry in differentiated muscle cells. Cloning Stem Cells 6:333–344

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM (2003) Regeneration: if they can do it, why can’t we? Cell 113:559–562

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Brockes JP (1998) A target of thrombin activation promotes cell cycle re-entry by urodele muscle cells. Wound Repair Regen 6:371–381

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Drechsel DN, Brockes JP (1999) Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr Biol 9:792–799

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Gann AA, Gates PB, Brockes JP (1997) Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165

    Article  PubMed  CAS  Google Scholar 

  • Tiainen M, Spitkovsky D, Jansen-Durr P, Sacchi A, Crescenzi M (1996) Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms. Mol Cell Biol 16:5302–5312

    PubMed  CAS  Google Scholar 

  • Velloso CP, Kumar A, Tanaka EM, Brockes JP (2000) Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 66:239–246

    Article  PubMed  CAS  Google Scholar 

  • Velloso CP, Simon A, Brockes JP (2001) Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol 11:855–858

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tanaka, E.M. (2008). Skeletal Muscle Reconstitution During Limb and Tail Regeneration in Amphibians: Two Contrasting Mechanisms. In: Skeletal Muscle Repair and Regeneration. Advances in Muscle Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6768-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6768-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6767-9

  • Online ISBN: 978-1-4020-6768-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics