Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 11))

  • 807 Accesses

Abstract

Topics included in this brief review of the metastatic process include recent (2004) progress in our understanding of tumor cell-host cell interactions and issues concerning the establishment of metastases. This includes the critical steps of intravasation and extravasation as well as establishment and evolution of micrometastases. Also summarized are details of metastasis-suppressing and metastasis-including genes and how they impact on signal transduction pathways. Finally, two proteins that play complex roles in the metastatic process, osteopontin and issue inhibitor of metastasis-1, are discussed in more depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan AL, Tuck AB, Bramwell VHC, Vandenberg TA, Winquist EW, Chambers AF (2004) Contribution of osteopontin to the development of bone metastasis. In: Singh G, Rabbani SA (eds) Bone cancer metastasis. Humana, Totowa, NJ.

    Google Scholar 

  • Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54.

    Article  PubMed  CAS  Google Scholar 

  • Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536.

    Article  PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283.

    PubMed  CAS  Google Scholar 

  • Chambers AF, Wilson SM, Kerkvliet N, O’Malley FP, Harris JF, Casson AG (1996) Osteopontin expression in lung cancer. Lung Cancer 15:311–323.

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Chang PL, Cao M, Hicks P (2003) Osteopontin induction is required for tumor promoter-induced transformation of preneoplastic mouse cells. Carcinogenesis 24:1749–1758.

    Article  PubMed  CAS  Google Scholar 

  • Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J (1999) Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res 59:1196–1201.

    PubMed  CAS  Google Scholar 

  • Corsini C, Mancuso P, Paul S, Burlini A, Martinelli G, Pruneri G, Bertolini F (2003) Stroma cells: a novel target of herceptin activity. Clin Cancer Res 9:1820–1825.

    PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392.

    Article  PubMed  CAS  Google Scholar 

  • Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, Rittling SR (2003) Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 20:77–84.

    Article  PubMed  CAS  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447.

    Article  PubMed  CAS  Google Scholar 

  • Dong-Le Bourhis X, Berthois Y, Millot G, Degeorges A, Sylvi M, Martin PM, Calvo F (1997) Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int J Cancer 71:42–48.

    Article  PubMed  CAS  Google Scholar 

  • El-Tanani M, Barraclough R, Wilkinson MC, Rudland PS (2001a) Regulatory region of metastasis-inducing DNA is the binding site for T cell factor-4. Oncogene 20:1793–1797.

    Article  PubMed  CAS  Google Scholar 

  • El-Tanani M, Barraclough R, Wilkinson MC, Rudland PS (2001b) Metastasis-inducing DNA regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Res 61:5619–5629.

    PubMed  CAS  Google Scholar 

  • Engers R, Gabbert HE (2000) Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol 126:682–692.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29 (Suppl 16):15–18.

    PubMed  CAS  Google Scholar 

  • Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF (2001) The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1:621–632.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195:346–355.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie MT, Thomas RJ, Zhou PU, Martin TJ, Findlay DM (1997) Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. Int J Cancer 10:812–815.

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T (1994) Tissue inhibitors of metalloproteinases and their cell growth-promoting activity. Cell Struct Funct 19:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, Shimanuki Y, Nishio K, Fukuchi Y (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117.

    Article  PubMed  CAS  Google Scholar 

  • Hojilla CV, Mohammed FF, Khokha R (2003) Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89:1817–1821.

    Article  PubMed  CAS  Google Scholar 

  • Holten-Andersen MN, Christensen IJ, Nielsen HJ, Stephens RW, Jensen V, Nielsen OH, Sorensen S, Overgaard J, Lilja H, Harris A, Murphy G, Brunner N (2002) Total levels of tissue inhibitor of metalloproteinases 1 in plasma yield high diagnostic sensitivity and specificity in patients with colon cancer. Clin Cancer Res 8:156–164.

    PubMed  CAS  Google Scholar 

  • Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36.

    PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T (1999) CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59:219–226.

    PubMed  CAS  Google Scholar 

  • Kheradmand F, Werb Z (2002) Shedding light on sheddases: role in growth and development. Bioessays 24:8–12.

    Article  PubMed  CAS  Google Scholar 

  • Leali D, Dell’Era P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, Nico B, Ribatti D, Presta M (2003) Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol 171:1085–1093.

    PubMed  CAS  Google Scholar 

  • LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. (2002) Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer 100:2–8.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84:44–48.

    Article  PubMed  CAS  Google Scholar 

  • Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR (2004) The BRMS1 metastasis suppressor forms complexes with RBP1 and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569.

    Article  PubMed  CAS  Google Scholar 

  • Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566.

    PubMed  CAS  Google Scholar 

  • Moss ML, White JM, Lambert MH, Andrews RC (2001) TACE and other ADAM proteases as targets for drug discovery. Drug Discov Today 6:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Woessner F (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494.

    Article  PubMed  CAS  Google Scholar 

  • Nakopoulou L, Giannopoulou I, Stefanaki K, Panayotopoulou E, Tsirmpa I, Alexandrou P, Mavrommatis J, Katsarou S, Davaris P (2002) Enhanced mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in breast carcinomas is correlated with adverse prognosis. J Pathol 197:307–313.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K, Nifuji A, Denhardt DT, Noda M (2001) Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res 16:652–659.

    Article  PubMed  CAS  Google Scholar 

  • Nii M, Kayada Y, Yoshiga K, Takada K, Okamoto T, Yanagihara K (2000) Suppression of metastasis by tissue inhibitor of metalloproteinase-1 in a newly established human oral squamous cell carcinoma cell line. Int J Oncol 16:119–124.

    PubMed  CAS  Google Scholar 

  • Normanno N, Bianco C, De Luca A, Salomon DS (2001) The role of EGF-related peptides in tumor growth. Front Biosci 6:D685–707.

    Article  PubMed  CAS  Google Scholar 

  • Oates AJ, Barraclough R, Rudland PS (1997) The role of osteopontin in tumorigenesis and metastasis. Invasion Metastasis 17:1–15.

    PubMed  CAS  Google Scholar 

  • Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4:487–494.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62:6966–6972.

    PubMed  CAS  Google Scholar 

  • Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, Sheu JC, Chen CL, Hsu HC (2003) Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98:119–127.

    Article  PubMed  CAS  Google Scholar 

  • Pardoll D (2001) T cells and tumours. Nature 411:1010–1012.

    Article  PubMed  CAS  Google Scholar 

  • Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS (2003) Immune responses to human tumors: development of tumor vaccines. Anticancer Res 23:1969–1996.

    PubMed  CAS  Google Scholar 

  • Porter JF, Shen S, Denhardt DT (2004) Tissue inhibitor of metalloproteinase-I stimulates proliferation of human cancer cells by inhibiting a metalloproteinase. Brit J Cancer 90:463–70.

    Article  PubMed  CAS  Google Scholar 

  • Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105:17–19.

    Article  PubMed  CAS  Google Scholar 

  • Ree AH, Florenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad O (1997) High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3:1623–1628.

    PubMed  CAS  Google Scholar 

  • Sharp JA, Sung V, Slavin J, Thompson EW, Henderson MA (1999) Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest 79:869–877.

    PubMed  CAS  Google Scholar 

  • Shevde LA, Welch DR (2003) Metastasis suppressor pathways–an evolving paradigm. Cancer Lett 198:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Shijubo N, Uede T, Kon S, Nagata M, Abe S (2000) Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog 11:135–146.

    PubMed  CAS  Google Scholar 

  • Sung V, Gilles C, Murray A, Clarke R, Aaron RD, Azumi N, Thompson EW (1998) The LCC15-MB human breast cancer cell line expresses osteopontin and exhibits invasive and metastatic phenotype. Exp Cell Res 241:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Svensson S, Nilsson K, Ringberg A, Landberg G (2003) Invade or proliferate? Two contrasting events in malignant behavior governed by p16(INK4a) and an intact Rb pathway illustrated by a model system of basal cell carcinoma. Cancer Res 63:1737–1742.

    PubMed  CAS  Google Scholar 

  • Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277.

    PubMed  CAS  Google Scholar 

  • Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292.

    PubMed  CAS  Google Scholar 

  • Tuck AB, Elliott BE, Hota C, Tremblay E, Chambers AF (2000) Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem 78:465–475.

    Article  PubMed  CAS  Google Scholar 

  • Tuck AB, Hota C, Chambers AF (2001) Osteopontin(OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Res Treat 70:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Tuck AB, Hota C, Wilson SM, Chambers AF (2003) Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 22: 198–1205.

    Article  CAS  Google Scholar 

  • Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79:502–508.

    Article  PubMed  CAS  Google Scholar 

  • van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19:301–311.

    Article  PubMed  Google Scholar 

  • Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42.

    Article  PubMed  CAS  Google Scholar 

  • Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29.

    Article  PubMed  CAS  Google Scholar 

  • Wall SJ, Jiang Y, Muschel RJ, DeClerck YA (2003) Meeting report: Proteases, extracellular matrix, and cancer: an AACR Special Conference in Cancer Research. Cancer Res 63:4750–4755.

    PubMed  CAS  Google Scholar 

  • Wang CS, Tetu B (2002) Stromelysin-3 expression by mammary tumor-associated fibroblasts under in vitro breast cancer cell induction. Int J Cancer 99:792–799.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Yamashita K, Iwata K, Hayakawa T (2002) Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem Biophys Res Commun 296:201–205.

    Article  PubMed  CAS  Google Scholar 

  • Welch DR, Steeg PS, Rinker-Schaeffer CW (2000) Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2:408–416.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049.

    Article  PubMed  CAS  Google Scholar 

  • Weber GF (2001) The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 1552:61–85.

    PubMed  CAS  Google Scholar 

  • Westermarck J, Kahari V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792.

    PubMed  CAS  Google Scholar 

  • Wong CW, Song C, Grimes MM, Fu W, Dewhirst MW, Muschel RJ, Al-Mehdi AB (2002) Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol 161:749–753.

    PubMed  Google Scholar 

  • Yamashita K, Suzuki M, Iwata H, Koike T, Hamaguchi M, Shinagawa A, Noguchi T, Hayakawa T (1996) Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). FEBS Letts 396:103–107.

    Article  CAS  Google Scholar 

  • Yan L, Moses MA (2001) A case of tumor betrayal: biphasic effects of TIMP-1 on Burkitt’s lymphoma.Am J Pathol 158:1185–1190.

    PubMed  CAS  Google Scholar 

  • Yeatman TJ, Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metastasis 20:85–90.

    Article  PubMed  CAS  Google Scholar 

  • Ylisirnio S, Hoyhtya M, Makitaro R, Paaakko P, Risteli J, Kinnula VL, Turpeenniemi-Hujanen T, Jukkola A (2001) Elevated serum levels of type I collagen degradation marker ICTP and tissue inhibitor of metalloproteinase (TIMP) 1 are associated with poor prognosis in lung cancer. Clin Cancer Res 7:1633–1637.

    PubMed  CAS  Google Scholar 

  • Yoshiji H, Harris SR, Raso E, Gomez DE, Lindsay CK, Shibuya M, Sinha CC, Thorgeirsson UP (1998) Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 75:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Saitoh M, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, Yanoma S, Noguchi Y (1999) Tissue inhibitor of matrix metalloproteinase-1 in the plasma of patients with gastric carcinoma. A possible marker for serosal invasion and metastasis. Cancer 86:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG (1995) Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1:899–906.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Denhardt, D.T., Chambers, A.F., Welch, D.R. (2008). Metastasis: a current perspective. In: Kaiser, H.E., Nasir, A. (eds) Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response. Cancer Growth and Progression, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6729-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6729-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6728-0

  • Online ISBN: 978-1-4020-6729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics