Skip to main content

The Role of Manifold Learning in Human Motion Analysis

  • Chapter
Human Motion

Part of the book series: Computational Imaging and Vision ((CIVI,volume 36))

The human body is an articulated object with a high number of degrees of freedom. Despite the high dimensionality of the configuration space, many human motion activities lie intrinsically on low-dimensional manifolds. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifolds are challenging to model given various aspects that affect the appearance such as the shape and appearance of the person performing the motion, or variation in the viewpoint, or illumination. Our objective is to learn representations for the shape and the appearance of moving (dynamic) objects that support tasks such as synthesis, pose recovery, reconstruction, and tracking. We studied various approaches for representing global deformation manifolds that preserve their geometric structure. Given such representations, we can learn generative models for dynamic shape and appearance. We also address the fundamental question of separating style and content on nonlinear manifolds representing dynamic objects. We learn factorized generative models that explicitly decompose the intrinsic body configuration (content) as a function of time from the appearance/shape (style factors) of the person performing the action as time-invariant parameters. We show results on pose recovery, body tracking, gait recognition, as well as facial expression tracking and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.O’Rourke, Badler: Model-based image analysis of human motion using con-straint propagation. IEEE PAMI 2(6) (1980)

    Google Scholar 

  2. Hogg, D.: Model-based vision: a program to see a walking person. Image and Vision Computing 1(1) (1983) 5-20

    Article  Google Scholar 

  3. Chen, Z., Lee, H.: Knowledge-guided visual perception of 3-d human gait from single image sequence. IEEE SMC 22(2) (1992) 336-342

    Google Scholar 

  4. Rohr, K.: Towards model-based recognition of human movements in image sequence. CVGIP 59(1) (1994) 94-115

    Article  Google Scholar 

  5. Rehg, J.M., Kanade, T.: Model-based tracking of self-occluding articulated objects. In: ICCV (1995) 612-617

    Google Scholar 

  6. Gavrila, D., Davis, L.: 3-d model-based tracking of humans in action: a multi-view approach. In: IEEE Conference on Computer Vision and Pattern Recog-nition. Volume 73-80 (1996)

    Google Scholar 

  7. Kakadiaris, I.A., Metaxas, D.: Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, CVPR, Los Alamitos, California, USA, IEEE Computer Society (1996) 81-87

    Chapter  Google Scholar 

  8. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human figures using 2d image motion. In: ECCV (2) (2000) 702-718

    Google Scholar 

  9. Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an application to human hand tracking. In: ECCV (2) (1994) 35-46

    Google Scholar 

  10. Darrell, T., Pentland, A.: Space-time gesture. In: Proc IEEE CVPR (1993)

    Google Scholar 

  11. Campbell, L.W., Bobick, A.F.: Recognition of human body motion using phase space constraints. In: ICCV (1995) 624-630

    Google Scholar 

  12. Wern, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of human body. IEEE Transaction on Pattern Analysis and Machine Intelligence 19(7) (1997)

    Google Scholar 

  13. Ju, S.X., Black, M.J., Yacoob, Y.: Cardboard people: A parameterized model of articulated motion. In: International Conference on Automatic Face and Gesture Recognition, Killington, Vermont (1996) 38-44

    Chapter  Google Scholar 

  14. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. In: ECCV (1) (1996) 329-342

    Google Scholar 

  15. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Who? when? where? what? a real time system for detecting and tracking people. In: International Conference on Automatic Face and Gesture Recognition (1998) 222-227

    Google Scholar 

  16. Yacoob, Y., Black, M.J.: Parameterized modelling and recognition of activities. Computer Vision and Image Understanding: CVIU 73(2) (1999) 232-247

    Article  Google Scholar 

  17. Fablet, R., Black, M.J.: Automatic detection and tracking of human motion with a view-based representation. In: Proc. ECCV 2002, LNCS 2350 (2002) 476-491

    Google Scholar 

  18. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit probabilistic models of human motion for synthesis and tracking. In: Proc. ECCV 2002, LNCS 2350 (2002) 784-800

    Google Scholar 

  19. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: ‘Dynamism of a dog on a leash’ or behavior classification by eigen-decomposition of periodic motions. In: Proceedings of the ECCV’02, Copenhagen, Springer, LNCS 2350 (2002) 461-475

    Google Scholar 

  20. Polana, R., Nelson, R.C.: Qualitative detection of motion by a moving observer. International Journal of Computer Vision 7(1) (1991) 33-46

    Article  Google Scholar 

  21. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP Image Understanding 56(1) (1992) 78-89

    Article  MATH  Google Scholar 

  22. Polana, R., Nelson, R.: Low level recognition of human motion (or how to get your man without finding his body parts). In: IEEE Workshop on Non-Rigid and Articulated Motion (1994) 77-82

    Google Scholar 

  23. Polana, R., Nelson, R.C.: Detecting activities. Journal of Visual Communication and Image Representation (1994)

    Google Scholar 

  24. Niyogi, S., Adelson, E.: Analyzing and recognition walking figures in xyt. In: Proc. IEEE CVPR (1994) 469-474

    Google Scholar 

  25. Song, Y., Feng, X., Perona, P.: Towards detection of human motion. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2000) (2000) 810-817

    Google Scholar 

  26. Rittscher, J., Blake, A.: Classification of human body motion. In: IEEE Inter-national Conferance on Compute Vision (1999)

    Google Scholar 

  27. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3)(2001) 257-267

    Article  Google Scholar 

  28. Cutler, R., Davis, L.: Robust periodic motion and motion symmetry detection. In: Proc. IEEE CVPR (2000)

    Google Scholar 

  29. Mori, G., Malik., J.: Estimating human body configurations using shape context matching. In: European Conference on Computer Vision (2002)

    Google Scholar 

  30. Kristen Grauman, Gregory Shakhnarovich, T.D.: Inferring 3d structure with a statistical image-based shape model. In: ICCV (2003)

    Google Scholar 

  31. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter- sensitive hashing. In: ICCV (2003)

    Google Scholar 

  32. Howe, Leventon, Freeman, W.: Bayesian reconstruction of 3d human motion from single-camera video. In: Proc. NIPS (1999)

    Google Scholar 

  33. Brand, M.: Shadow puppetry. In: International Conference on Computer Vision. Volume 2 (1999) 1237

    Article  Google Scholar 

  34. Rosales, R., Sclaroff, S.: Inferring body pose without tracking body parts. Tech- nical Report 1999-017 (1999)

    Google Scholar 

  35. Rosales, R., Sclaroff, S.: Specialized mappings and the estimation of human body pose from a single image. In: Workshop on Human Motion (2000) 19-24

    Google Scholar 

  36. Rosales, R., Athitsos, V., Sclaroff, S.:3D hand pose reconstruction using spe- cialized mappings. In: Proc. ICCV (2001)

    Google Scholar 

  37. Christoudias, C.M., Darrell, T.: On modelling nonlinear shape-and-texture ap-pearance manifolds. In: Proc.of IEEE CVPR. Volume 2 (2005) 1067-1074

    Google Scholar 

  38. Rahimi, A., Recht, B., Darrell, T.: Learning appearane manifolds from video. In: Proc.of IEEE CVPR. Volume 1 (2005) 868-875

    Google Scholar 

  39. Bowden, R.: Learning statistical models of human motion. In: IEEE Workshop on Human Modelling, Analysis and Synthesis (2000)

    Google Scholar 

  40. Toyama, K., Blake, A.: Probabilistic tracking in a metric space. In: ICCV (2001) 50-59

    Google Scholar 

  41. Bregler, C., Omohundro, S.M.: Nonlinear manifold learning for visual speech recognition (1995) 494-499

    Google Scholar 

  42. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag (1986)

    Google Scholar 

  43. M. Turk, A. Pentland: Eigenfaces for recognition. Journal of Cognitive Neuro- science 3(1) (1991) 71-86

    Article  Google Scholar 

  44. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. In: ECCV (1) (1996) 45-58

    Google Scholar 

  45. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: Their training and application. CVIU 61(1) (1995) 38-59

    Google Scholar 

  46. Levin, A., Shashua, A.: Principal component analysis over continuous sub-spaces and intersection of half-spaces. In: ECCV, Copenhagen, Denmark (2002) 635-650

    Google Scholar 

  47. Murase, H., Nayar., S.: Visual learning and recognition of 3d objects from appearance. International Journal of Computer Vision 14 (1995) 5-24

    Article  Google Scholar 

  48. Tenenbaum, J., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12 (2000) 1247-1283

    Article  Google Scholar 

  49. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensebles: Ten-sorfaces. In: Proc. of ECCV, Copenhagen, Danmark (2002) 447-460

    Google Scholar 

  50. Magnus, J., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York (1988)

    MATH  Google Scholar 

  51. Marimont, D., Wandell, B.: Linear models of surface and illumination spectra. Journal of Optical Society od America 9 (1992) 1905-1913

    Article  Google Scholar 

  52. Lathauwer, L.D., de Moor, B., Vandewalle, J.: A multilinear singular value de-composiiton. SIAM Journal On Matrix Analysis and Applications 21(4) (2000) 1253-1278

    Article  MATH  MathSciNet  Google Scholar 

  53. Shashua, A., Levin, A.: Linear image coding of regression and classification using the tensor rank principle. In: Proc. of IEEE CVPR, Hawai (2001)

    Google Scholar 

  54. Vasilescu, M.A.O.: An algorithm for extracting human motion signatures. In: Proc. of IEEE CVPR, Hawai (2001)

    Google Scholar 

  55. Wang, H., Ahuja, N.: Rank-r approximation of tensors: Using image-as-matrix representation. (In: Proc IEEE CVPR)

    Google Scholar 

  56. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychome- trika 31 (1966) 279-311

    Article  Google Scholar 

  57. Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach to n-model component analysis. Psychometrika 51(2) (1986) 269-275

    Article  MATH  MathSciNet  Google Scholar 

  58. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). In: Proceedings of IEEE CVPR. Volume 1 (2003) 621-628

    Google Scholar 

  59. Vidal, R., Hartley, R.: Motion segmentation with missing data using powerfac- torization and gpca (2004)

    Google Scholar 

  60. Cox, T., Cox, M.: Multidimentional scaling. Chapman & Hall (1994)

    Google Scholar 

  61. Tenenbaum, J.: Mapping a manifold of perceptual observations. In: Advances in Neural Information Processing. Volume 10 (1998) 682-688

    Google Scholar 

  62. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear em-bedding. Sciene 290(5500) (2000) 2323-2326

    Article  Google Scholar 

  63. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6) (2003) 1373-1396

    Article  MATH  Google Scholar 

  64. Brand, M., Huang, K.: A unifying theorem for spectral embedding and cluster-ing. In: Proc. of the Ninth International Workshop on AI and Statistics (2003)

    Google Scholar 

  65. Lawrence, N.: Gaussian process latent variable models for visualization of high dimensional data. In: NIPS (2003)

    Google Scholar 

  66. Weinberger, K.W., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. In: Proceedings of IEEE CVPR. Volume 2 (2004) 988-995

    Google Scholar 

  67. Mordohai, P., Medioni, G.: Unsupervised dimensionality estimation and man-ifold learning in high-dimensional spaces by tensor voting. In: Proceedings of International Joint Conference on Artificial Intelligence (2005)

    Google Scholar 

  68. Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.F., Vincent, P., Ouimet, M.: Learning eigenfunctions links spectral embedding and kernel pca. Neural Comp. 16(10) (2004) 2197-2219

    Article  MATH  Google Scholar 

  69. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality reduction of manifolds. In: Proceedings of ICML, New York, NY, USA, ACM Press (2004)47

    Google Scholar 

  70. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Reg-ularization, Optimization and Beyond. MIT Press, Cambridge, Massachusetts (2002)

    Google Scholar 

  71. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In: NIPS 16 (2004)

    Google Scholar 

  72. Elgammal, A.: Nonlinear generative models for dynamic shape and dynamic appearance. In: Proc. of 2nd International Workshop on Generative-Model based vision. GMBV 2004 (2004)

    Google Scholar 

  73. Elgammal, A., Lee, C.S.: Separating style and content on a nonlinear manifold. In: Proc. of CVPR (2004) 478-485

    Google Scholar 

  74. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(5500) (2000)2268-2269

    Article  Google Scholar 

  75. Poggio, T., Girosi, F.: Network for approximation and learning. Proc. IEEE 78(9)(1990) 1481-1497

    Article  Google Scholar 

  76. Beymer, D., Poggio, T.: Image representations for visual learning. Science 272(5250)(1996)

    Google Scholar 

  77. Elgammal, A., Lee, C.S.: Inferring 3d body pose from silhouettes using activity manifold learning. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  78. Lee, C.S., Elgammal, A.: Style adaptive bayesian tracking using explicit mani- fold learning. In: Proc BMVC (2005)

    Google Scholar 

  79. Lee, C.S., Elgammal, A.: Gait tracking and recognition using person-dependent dynamic shape model. In: International Conference on Automatic Face and Gesture Recognition. Volume 0., IEEE Computer Society (2006) 553-559

    Google Scholar 

  80. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis of image ensembles. (2003)

    Google Scholar 

  81. Lee, C.S., Elgammal, A.: Homeomorphic manifold analysis: Learning decompos-able generative models for human motion analysis. In: Workshop on Dynamical Vision (2005)

    Google Scholar 

  82. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Technical Report TR-01-18, Carnegie Mellon University (2001)

    Google Scholar 

  83. Lee, C.S., Elgammal, A.M.: Simultaneous inference of view and body pose using torus manifolds. In: ICPR (3) (2006) 489-494

    Google Scholar 

  84. Lee, C.S., Elgammal, A.: Gait style and gait content: Bilinear model for gait recogntion using gait re-sampling. In: International Conference on Automatic Face and Gesture Recognition (2004) 147-152

    Google Scholar 

  85. Lee, C.S., Elgammal, A.M.: Towards scalable view-invariant gait recognition: Multilinear analysis for gait. In: AVBPA (2005) 395-405

    Google Scholar 

  86. Lee, C.S., Elgammal, A.: Facial expression analysis using nonlinear decompos-able generative models. In: AMFG (2005) 17-31

    Google Scholar 

  87. Lee, C.S., Elgammal, A.M.: Nonlinear shape and appearance models for facial expression analysis and synthesis. In: ICPR (1) (2006) 497-502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Elgammal, A., Lee, CS. (2008). The Role of Manifold Learning in Human Motion Analysis. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human Motion. Computational Imaging and Vision, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6693-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6693-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6692-4

  • Online ISBN: 978-1-4020-6693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics