Skip to main content

Cognitive Foundations of Learning Argumentation

  • Chapter
Argumentation in Science Education

Part of the book series: Science & Technology Education Library ((CTISE,volume 35))

The goal of the present chapter is to provide a cognitive analysis of the competencies involved in argumentation: the psychological processes involved in argumentation, how these processes develop, and most importantly, given the scope of the present book, how this development relates to science learning. For the latter, we need to situate the role of argumentation in science learning, and this is the focus of the first section of the chapter, where the case of the importance of argumentation in the new approaches of science will be made. Argumentation, however, is a very broad, multidisciplinary, and polisemic term, and thus is used differently within and between disciplines. The second section is an attempt to clarify the term. We will devote the third section to concretizing which aspects of argumentation specifically relate to science education, in order to make a cognitive analysis of these aspects in the fourth and fifth sections. Finally, the last section addresses what the literature says about scaffolding argumentation. In other words, we will try to answer the questions science educators may pose in order to deal with argumentation in their science classes: What are the main difficulties students meet when they engage in argumentation? What should we expect from young children in an elementary class in terms of their competencies to argue? In what ways are these competencies different when we compare elementary with secondary school students? What are they built upon? What is the role of metacognition in their development? Our underlying main claim is that argumentation is a process involved in general knowledge acquisition, regardless of whether it is individual silent learning or collaborative learning, and following Siegel (1989) it is aimed at the rational resolution of questions, issues, and disputes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. C., Chinn, C., Chang, J., Waggoner, M., & Yi, H. (1997). On the logical integrity of children’s arguments. Cognition and Instruction, 15, 135–167.

    Article  Google Scholar 

  • Anderson, R. C., Chinn, C. A., Waggoner, M., & Nguyen, K. (1998). Intellectually stimulating story discussions. In J. Osborn & F. Lehr (Eds.), Literacy for all (pp. 170–196). New York: Guilford.

    Google Scholar 

  • Anderson, R. C., Nguyen-Jahiel, K., McNurlen, B., Archoudidou, A., Kim, S., Retznitskaya, A., et al. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19, 1–46.

    Article  Google Scholar 

  • Bakhtin, M. M. (1934, 1981). The dialogic imagination. In M. Holquist (Ed.) C. Emerson & M. Holquist (Trans.). Austin, TX: University of Texas Press.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (1987). The psychology of written composition. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brem, S., & Rips, L. (2000). Explanation and evidence in informal argument. Cognitive Science, 24, 573–604.

    Article  Google Scholar 

  • Candela, A. (2002). Evidencias y hechos: La construcción social del discurso de la ciencia en el aula. In M. Benlloch (Ed.), La educación en ciencias. Ideas para mejorar su práctica. Barcelona, Spain: Paidos.

    Google Scholar 

  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: Bradford/MIT Press.

    Google Scholar 

  • Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28, 235–251.

    Article  Google Scholar 

  • Cheng, P., & Novick, L. (1992). Covariation in natural causal induction. Psychological Review, 99, 365–382.

    Article  Google Scholar 

  • Chinn, C. A., & Anderson, R. C. (1998). The structure of discussions that promote reasoning. Teachers College Record, 100, 315–368.

    Google Scholar 

  • Chinn, C. A., & Brewer, W. (2001). Models of data: A theory of how people evaluate data. Cognition and Instruction, 19, 323–393.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35, 623–654.

    Article  Google Scholar 

  • Copi, I. M. (1972). Introduction to logic (4th ed.). New York: Macmillan.

    Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.

    Article  Google Scholar 

  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.

    Article  Google Scholar 

  • Eemeren, F. H. van, Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., et al. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Eisenberg, A. R., & Garvey, C. (1981). Children’s use of verbal strategies in resolving conflicts. Discourse Processes, 4, 149–170.

    Article  Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.

    Article  Google Scholar 

  • Felton, M. (2004). The development of discourse strategies in adolescent argumentation. Cognitive Development, 19, 35–52.

    Article  Google Scholar 

  • Felton, M., & Kuhn, D. (2001). The development of argumentive discourse skills. Discourse Processes, 32, 135–153.

    Article  Google Scholar 

  • Flavell, J. (1999). Cognitive development: Children’s knowledge about the mind. Annual Review of Psychology, 50, 21–45.

    Article  Google Scholar 

  • Garcia-Mila, M., & Andersen, C. (2007). Developmental change in notetaking during scientific inquiry. International Journal of Science Education, 29, 1035–1058.

    Article  Google Scholar 

  • Garcia-Mila, M., Rojo, N., & Andersen, C. (2006). Etude de cas: Prise de notes et recherche scientifique (Case study: Notetaking and scientific research). Lettre d’Airdif, 37(2), 15–18.

    Google Scholar 

  • Hickman, M. (1987). Social and functional approaches to language and thought. Orlando, FL: Academic Press.

    Google Scholar 

  • Hofer, B., & Pintrich, P. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88–140.

    Google Scholar 

  • Hofer, B., & Pintrich, P. (Eds.) (2002). Epistemology: The psychology of beliefs about knowledge. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757–792.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Pereiro Muñoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24, 1171–1190.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond modularity. A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Keil, F. C. (1998). Cognitive science and the origins of thought and knowledge. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (5th ed., pp. 341–413). New York: Wiley.

    Google Scholar 

  • Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36, 883–915.

    Article  Google Scholar 

  • Kelly, G. J., & Crawford, T. (1997). An ethnographic investigation of the discourse processes of school science. Science Education, 81, 533–559.

    Article  Google Scholar 

  • Klaczynski, P. (2000). Motivated scientific reasoning biases, epistemological beliefs, and theory polarization: A two process approach to adolescent cognition. Child Development, 71, 1347–1366.

    Article  Google Scholar 

  • Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Klein, P. D. (2000). Elementary students’ strategies for writing-to-learn in science. Cognition and Instruction, 18, 317–348.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.

    Google Scholar 

  • Kuhn, D. (2001). How do people know? Psychological Science, 12, 1–8.

    Article  Google Scholar 

  • Kuhn, D. (2005). Education for thinking. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. San Diego: Academic Press.

    Google Scholar 

  • Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development, 15, 309–328.

    Article  Google Scholar 

  • Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and how)? In W. Damon & Richard M. Lerner (Series Eds.), D. Kuhn & R. Siegler (Vol. Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (6th ed., pp. 953–993). Hoboken, NJ: Wiley.

    Google Scholar 

  • Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60(4, Serial No. 245).

    Google Scholar 

  • Kuhn, D., & Pearsall, S. (1998). Relations between metastrategic knowledge and strategic performance. Cognitive Development, 13, 227–247.

    Article  Google Scholar 

  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113–129.

    Article  Google Scholar 

  • Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition and Instruction, 9, 285–327.

    Article  Google Scholar 

  • Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentive reasoning. Cognition and Instruction, 15, 287–315.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74, 1245–1260.

    Article  Google Scholar 

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1986). An anthropologist visits the laboratory. In B. Latour & S. Woolgar (Eds.), Laboratory life: The construction of scientific facts (pp. 83–90). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lemke, J. L. (2002). Enseñar todos los lenguajes de la ciencia: palabras, símbolos, imágenes y acciones. In M. Benlloch (Ed.), La educación en ciencias: Ideas para mejorar su práctica (pp. 159–185). Barcelona, Spain: Paidós.

    Google Scholar 

  • Means, M., & Voss, J. (1996). Who reasons well? Two studies of informal reasoning among students of different grade, ability, and knowledge levels. Cognition and Instruction, 14, 139–178.

    Article  Google Scholar 

  • Moshman, D. (1995). Reasoning as self-constrained thinking. Human Development, 38, 53–64.

    Article  Google Scholar 

  • Moshman, D. (1998). Cognitive development beyond childhood. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (5th ed., pp. 947–978). New York: Wiley.

    Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41, 994–1020.

    Article  Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (Eds.) (1969). The new rhetoric: A treatise on argumentation (2nd ed. Original work published in 1958 ed.). Notre Dame, IN: University of Notre Dame Press.

    Google Scholar 

  • Perkins, D. (1985). Post-primary education has little impact upon informal reasoning. Journal of Educational Psychology, 77, 563–571.

    Article  Google Scholar 

  • Perner, J. (1991). Understanding the representational mind. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Perry, W. (1970). Forms of intellectual and ethical development in the college years. New York: Holt, Rinehart, & Winston.

    Google Scholar 

  • Pontecorvo, C., & Girardet, H. (1993). Arguing and reasoning in understanding historical topics. Cognition and Instruction, 11, 365–395.

    Article  Google Scholar 

  • Prain, V., & Hand, B. (1996). Writing for learning in secondary science: Rethinking practices. Teaching and Teacher Education, 12, 609–626.

    Article  Google Scholar 

  • Quinn, V. (1997). Critical thinking in young minds. London: David Fulton Publishers.

    Google Scholar 

  • Resnick, L. (1987). Education and learning to think. Washington, DC: National Academy Press.

    Google Scholar 

  • Reznitskaya, A., Anderson, R., McNurlen, B., Nguyen-Jahiel, K., Archoudidou, A., & Kim, S. (2001). Influence of oral discussion on written argument. Discourse Processes, 32, 155–175.

    Article  Google Scholar 

  • Rivard, L. P. (1994). A review of writing-to-learn in science: Implications for practice and research. Journal of Research in Science Teaching, 31, 969–983.

    Article  Google Scholar 

  • Ruffman, T., Perner, J., Olson, D., & Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Development, 64, 1617–1636.

    Article  Google Scholar 

  • Schultz, L., & Gopnik, A. (2004). Causal learning across domains. Developmental Psychology, 40, 162–176.

    Article  Google Scholar 

  • Siegel, H. (1989). The rationality of science, critical thinking and science education. Synthese, 80(1), 9–42.

    Article  Google Scholar 

  • Sodian, B., Zaitchick, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62, 753–766.

    Article  Google Scholar 

  • Stein, N. L., & Miller, C. A. (1993). The development of memory and reasoning skill in argumentive contexts: Evaluating, explaining and generating evidence. In R. Glaser (Ed.), Advances in instructional psychology. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument (Updated edition ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vosniadou, S., & Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Learning and Instruction, 42, 445–451.

    Article  Google Scholar 

  • Voss, J. F., & Means, M. (1991). Learning to reason via instruction in argumentation. Learning and Instruction, 1, 337–350.

    Article  Google Scholar 

  • Voss, J. F., & Van Dike, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2&3), 89–111.

    Article  Google Scholar 

  • Vygotsky, L. S. (1981). The genesis of higher mental functions. In J. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 144–188). Armonk, NY: Sharpe.

    Google Scholar 

  • Walton, D. N. (1989). Dialogue theory for critical thinking. Argumentation, 3, 169–184.

    Article  Google Scholar 

  • Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99–149.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Garcia-Mila, M., Andersen, C. (2007). Cognitive Foundations of Learning Argumentation. In: Erduran, S., Jiménez-Aleixandre, M.P. (eds) Argumentation in Science Education. Science & Technology Education Library, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6670-2_2

Download citation

Publish with us

Policies and ethics