Skip to main content

Transition Edge Cameras for Fast Optical Spectrophotometry

  • Chapter
High Time Resolution Astrophysics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 351))

Abstract

When one spends 108–8.5 euros on a large aperture telescope, it behoves one to make maximal use of the photons concentrated at the focus. One popular path is to use very large focal plane arrays, for a high multiplex advantage; this is a natural driver in extragalactic survey science. The other avenue to efficiency applies to single source science, where a large field of view is not necessary, but energy resolution over a broad wavelength range, high time resolution and, possibly, polarization measurements wring maximum benefit from the collected photons.

Cryogenic energy-resolving sensors are proving to be promising detectors for many areas of astronomy. Significant astronomical observations have, in fact, already been made using two detector schemes: Superconducting Tunnel Junction (STJ) and Transition-Edge Sensor (TES). TES instruments, in particular, have found application as bolometric detectors from the sub-mm to the hard X-ray range. We focus here on TES applications in the near IR through UV, reviewing the basic technology and describing current work toward effective imaging arrays. A TES camera using such arrays can address the need for broad-band single source efficiency at large telescopes noted above. A review of early test observations and a description of a few science goals are presented to illustrate this potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.A. Young, T. Saab, B. Cabrera, J.J. Cross, R.A. Abusaidi, NIMPA, 444, 296 (2000).

    Article  ADS  Google Scholar 

  2. Cabrera, B.; Clarke, R.M.; Cooling, P.; Miller, A.J.; Nam, S.W.; and Romani, R.W., Appl. Phys. Lett., 73, 735 (1998).

    Article  ADS  Google Scholar 

  3. K. D. Irwin, Appl. Phys. Lett. 66, 1998 (1995).

    Article  ADS  Google Scholar 

  4. Nam, S.W.; et al., IEEE Trans. Appl. Supercond., 9(2), 4209 (1999).

    Article  Google Scholar 

  5. Cabrera, B.; and Romani, R.W., Crogenic Particle Detection, (ed. C. Enss), Topics in Appl.Phys. 99, 417 (2005).

    Google Scholar 

  6. R.W. Romani, A.J. Miller, B. Cabrera, E. Figueroa-Feliciano, and S.W. Nam, ApJ 521, L153 (1999).

    Article  ADS  Google Scholar 

  7. R.W. Romani, B. Cabrera, E. Figueroa, A.J. Miller, and S. W. Nam, Bull. Am. Astron. Soc. 193, 11.12 (1998).

    Google Scholar 

  8. R.W. Romani, A.J. Miller, B. Cabrera, S.W. Nam, J.M. Martinis, ApJ 563, 221 (2001).

    Article  ADS  Google Scholar 

  9. J. Burney, T.J. Bay, P.L. Brink, B. Cabrera, J.P. Castle, R.W. Romani, A. Tomada, S.W. Nam, A.J. Miller, J.M. Martinis,E. Wangc , T. Kennyc , and B. Young, Nucl. Instr. and Meth. A 520, 533 (2004).

    Article  ADS  Google Scholar 

  10. Brammertz, G.; Peacock, A.; Verhoeve, P.; Kozorezov, A.; den Hartog, R.; Rando, N.;Venn, R.; AIP Conference Proceedings; 2002; no.605, p. 59–62.

    Google Scholar 

  11. Martin, D.D.E; et al., j SPIE Proc. 6269 22 (2006).

    Google Scholar 

  12. Thomas J. Bay, et al.; Proceedings of SPIE Vol. 5209 Materials for Infrared Detectors III, edited by Randolph E. Longshore, Sivalingam Sivananthan (SPIE, Bellingham, WA, 2003).

    Google Scholar 

  13. M.A.C. Perryman, M. Cropper, G. Ramsay, F. Favata, A. Peacock, N. Rando, A. Reynolds, Mon. Not. R. Astron. Soc., 324 899 (2001).

    Google Scholar 

  14. J.H.J. De Bruijne, A.P. Reynolds, A.M.C. Perryman, A. Peacock, F. Favata, N. Rando, D. Martin, P. Verhoeve, N. Christlieb, Astron. Astrophys., 381, L57 (2002).

    Article  ADS  Google Scholar 

  15. Reynolds, A.P., Ramsay, G., de Bruinje, J.H.J., Perryman,M.A.C., Cropper,M., Bridge, C.M., and Peacock, A., A&A, 435, 225(2005).

    Article  ADS  Google Scholar 

  16. Cropper, M.; et al., MNRAS, 334, 33 (2003).

    Article  ADS  Google Scholar 

  17. J. A. Chervanek, K.D. Irwin, E.N. Grossman, J.M. Martinins, C.D. Reintsema, and M.E. Huber, Appl. Phys. Lett., 74, 4043 (1999).

    Article  ADS  Google Scholar 

  18. Irwin, K.D.; et al., SPIE Proc. 5498 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Romani, R.W., Bay, T.J., Burney, J., Cabrera, B. (2008). Transition Edge Cameras for Fast Optical Spectrophotometry. In: Phelan, D., Ryan, O., Shearer, A. (eds) High Time Resolution Astrophysics. Astrophysics and Space Science Library, vol 351. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6518-7_16

Download citation

Publish with us

Policies and ethics