Skip to main content

SUMO is a small ubiquitin-related modifier implicated in control of various cellular processes including gene transcription, cell cycle, DNA repair and apoptosis. Here we describe details of the SUMO molecular machineries implicated in the formation of signaling networks that underlie the specificity in these biological processes. SUMO signaling is also altered during development of human diseases, including cancer pathogenesis, and these alterations can be explored as a possible drug target.

Keywords: SUMO, Ubiquitin, NFκB, PCNA, RanGAP1, RanBP2, nucleocytoplasmic transport, reptin, KAI1, PTP1B, cancer pathogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkuraya, F.S., Saadi, I., Lund, J.J., Turbe-Doan, A., Morton, C.C., and Maas, R.L. (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313: 1751.

    Article  Google Scholar 

  • Ayaydin, F., and Dasso, M. (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol. Biol. Cell 15: 5208-5218.

    Article  Google Scholar 

  • Baek, S.H. (2006) A novel link between SUMO modification and cancer metastasis. Cell Cycle 5: 1492-1495.

    Article  MathSciNet  Google Scholar 

  • Bauer, A., Chauvet, S., Huber, O., Usseglio, F., Rothbacher, U., Aragnol, D., Kemler, R., and Pradel, J. (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J. 19: 6121-6130.

    Article  Google Scholar 

  • Dadke, S., Cotteret, S., Yip, S.C., Jaffer, Z.M., Haj, F., Ivanov, A., Rauscher, F., 3rd, Shuai, K., Ng, T., Neel, B.G., and Chernoff, J. (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat. Cell Biol. 9: 80-85.

    Article  Google Scholar 

  • Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2: 233-239.

    Article  Google Scholar 

  • Gill, G. (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13: 108-113.

    Article  Google Scholar 

  • Gill, G. (2005) Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15: 536-541.

    Article  Google Scholar 

  • Gutierrez, G.J., and Ronai, Z. (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci. 31: 324-332.

    Article  Google Scholar 

  • Haglund, K., and Dikic, I. (2005) Ubiquitylation and cell signaling. EMBO J. 24: 1-7.

    Article  Google Scholar 

  • Hay, R.T. (2005) SUMO: a history of modification. Mol. Cell 18: 1-12.

    Article  Google Scholar 

  • Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281: 16117-16127.

    Article  Google Scholar 

  • Hershko, A., and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.

    Article  Google Scholar 

  • Hicke, L., Schubert, H.L., and Hill, C.P. (2005) Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6: 610-621.

    Article  Google Scholar 

  • Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.

    Article  ADS  Google Scholar 

  • Hoeller, D., Hecker, C.M., and Dikic, I. (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat. Rev. Cancer 6: 776-788.

    Article  Google Scholar 

  • Hooker, G.W., and Roeder, G.S. (2006) A Role for SUMO in meiotic chromosome synapsis. Curr. Biol. 16: 1238-1243.

    Article  Google Scholar 

  • Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H., and Miyamoto, S. (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565-576.

    Article  Google Scholar 

  • Johnson, E.S., and Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272: 26799-26802.

    Article  Google Scholar 

  • Kamitani, T., Nguyen, H.P., Kito, K., Fukuda-Kamitani, T., and Yeh, E.T. (1998) Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J. Biol. Chem. 273: 3117-3120.

    Article  Google Scholar 

  • Kim, J.H., Choi, H.J., Kim, B., Kim, M.H., Lee, J.M., Kim, I.S., Lee, M.H., Choi, S.J., Kim, K.I., Kim, S.I., et al. (2006) Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat. Cell. Biol. 8: 631-639.

    Article  Google Scholar 

  • Lyst, M.J., Nan, X., and Stancheva, I. (2006) Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins. EMBO J. 25: 5317-5328.

    Article  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiquitinrelated polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107.

    Article  Google Scholar 

  • Mahajan, R., Gerace, L., and Melchior, F. (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol. 140: 259-270.

    Article  Google Scholar 

  • Matunis, M.J., Coutavas, E., and Blobel, G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 13: 1457-1470.

    Article  Google Scholar 

  • Matunis, M.J., Wu, J., and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140: 499-509.

    Article  Google Scholar 

  • Melchior, F. (2000). SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16: 591-626.

    Article  Google Scholar 

  • Minty, A., Dumont, X., Kaghad, M., and Caput, D. (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275: 36316-36323.

    Article  Google Scholar 

  • Mo, Y.Y., and Moschos, S.J. (2005) Targeting Ubc9 for cancer therapy. Expert Opin. Ther. Targets 9: 1203-1216.

    Article  Google Scholar 

  • Moon, R.T., Kohn, A.D., De Ferrari, G.V., and Kaykas, A. (2004) WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5: 691-701.

    Article  Google Scholar 

  • Muller, S., Ledl, A., and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23: 1998-2008.

    Article  Google Scholar 

  • Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P.P., and Dejean, A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9: 769-779.

    Article  Google Scholar 

  • Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H.D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19: 123-133.

    Article  Google Scholar 

  • Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose, D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437: 759-763.

    Article  ADS  Google Scholar 

  • Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. (2005a) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428-433.

    ADS  Google Scholar 

  • Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. (2005b) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 136: 428-433.

    ADS  Google Scholar 

  • Pichler, A., Knipscheer, P., Oberhofer, E., van Dijk, W.J., Korner, R., Olsen, J.V., Jentsch, S., Melchior, F., and Sixma, T.K. (2005) SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 12: 264-269.

    Article  Google Scholar 

  • Rajendra, R., Malegaonkar, D., Pungaliya, P., Marshall, H., Rasheed, Z., Brownell, J., Liu, L.F., Lutzker, S., Saleem, A., and Rubin, E.H. (2004) Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J. Biol. Chem. 279: 36440-36444.

    Article  Google Scholar 

  • Reya, T., and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434: 843-850.

    Article  ADS  Google Scholar 

  • Rosas-Acosta, G., Russell, W.K., Deyrieux, A., Russell, D.H., and Wilson, V.G. (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics 4: 56-72.

    Google Scholar 

  • Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275: 6252-6258.

    Article  Google Scholar 

  • Seeler, J.S., and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4: 690-699.

    Article  Google Scholar 

  • Seet, B.T., Dikic, I., Zhou, M.M., and Pawson, T. (2006) Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7: 473-483.

    Article  Google Scholar 

  • Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. (2006) The mechanisms of PML-nuclear body formation. Mol. Cell 24: 331-339.

    Article  Google Scholar 

  • Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101: 14373-14378.

    Article  ADS  Google Scholar 

  • Uchimura, Y., Ichimura, T., Uwada, J., Tachibana, T., Sugahara, S., Nakao, M., and Saitoh, H. (2006) Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation. J. Biol. Chem. 281: 23180-23190.

    Article  Google Scholar 

  • Ulrich, H.D. (2005a) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15: 525-532.

    Article  Google Scholar 

  • Ulrich, H.D. (2005b) SUMO modification: wrestling with protein conformation. Curr. Biol. 15: R257-259.

    Article  Google Scholar 

  • Ulrich, H.D., Vogel, S., and Davies, A.A. (2005) SUMO keeps a check on recombination during DNA replication. Cell Cycle 4: 1699-1702.

    Article  Google Scholar 

  • Vertegaal, A.C., Ogg, S.C., Jaffray, E., Rodriguez, M.S., Hay, R.T., Andersen, J.S., Mann, M., and Lamond, A.I. (2004). A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279: 33791-33798.

    Article  Google Scholar 

  • Weger, S., Hammer, E., and Heilbronn, R. (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 579: 5007-5012.

    Article  Google Scholar 

  • Weissman, A.M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2: 169-178.

    Article  Google Scholar 

  • Willert, K., and Jones, K.A. (2006) Wnt signaling: is the party in the nucleus? Genes Dev. 20: 1394-1404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hecker, CM., Dikic, I. (2007). Protein Complexes in SUMO Signaling. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_5

Download citation

Publish with us

Policies and ethics