Skip to main content

An Infrared Study of Fibril Formation in Insulin from Different Sources

  • Chapter
Supramolecular Structure and Function 9

Amyloid fibrils are proteinaceous aggregates that can be formed in the process of degenerative diseases, such as Alzheimer’s and Creutzfeldt-Jakob diseases. The process of fibril formation can also be observed, under appropriate conditions, in many proteins not involved in neurodegenerative diseases. Insulin, a peptide hormone consisting of two polypeptides linked together by two interchain and one intrachain disulfide bonds, is a model of fibril formation that has produced a wealth of biochemical and structural data making it an excellent model for amyloid studies. Insulin from different mammal species, such as human recombinant, bovine and porcine, has small differences in sequence that produce variations in the three-dimensional structure. Infrared spectroscopy, although it is not a high-resolution technique, it presents the advantages of fast-time response and wider applicability required for studying aggregated materials. The time-course of fibril formation can be followed looking at the appearance of a characteristic band in the region of β-sheet structure. Human insulin, with a different aminoacid in the Nterminal segment, has a lower time in fibril formation than bovine or porcine. The wavenumber and the percentage of the band corresponding to the fibril is different in bovine as compared with human and porcine insulin, what is associated with a change in aminoacids 8 and 10 located in the intrachain disulfide bond. The results show that even if the macromolecular structure of the fibrils is alike, the process is different depending on small changes in protein sequence.

Keywords: Amyloid, Fibrils, Infrared spectroscopy, Insulin, Protein structure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C.B. (1973) Principles That Govern Folding of Protein Chains. Science 181: 223-230.

    Article  ADS  Google Scholar 

  • Arrondo, J.L.R. and Goñi, F.M. (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 72: 367-405.

    Article  Google Scholar 

  • Arrondo, J.L.R., Muga, A., Castresana, J., and Goñi, F.M. (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 59: 23-56.

    Article  Google Scholar 

  • Bouchard, M., Zurdo, J., Nettleton, E.J., Dobson, C.M., and Robinson, C.V. (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci. 9: 1960-1967.

    Article  Google Scholar 

  • Caughey, B.W., Dong, A., Bhat, K.S., Ernst, D., Hayes, S.F., and Caughey, W.S. (1991) Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy [published erratum appears in Biochemistry 1991 Oct 29; 30(43): 10600]. Biochemistry 30: 7672-7680.

    Article  Google Scholar 

  • Dluhy, R.A., Shanmukh, S., Leapard, J.B., Kruger, P., and Baatz, J.E. (2003) Deacylated Pulmonary Surfactant Protein SP-C Transforms From alpha-Helical to Amyloid Fibril Structure via a pH-Dependent Mechanism: An Infrared Structural Investigation. Biophys. J. 85: 2417-2429.

    Article  Google Scholar 

  • Dobson, C.M. (2003) Protein folding and misfolding. Nature 426: 884-890.

    Article  ADS  Google Scholar 

  • Fabian, H., Szendrei, G.I., Mantsch, H.H., and Otvos, L., Jr. (1993) Comparative analysis of human and Dutch-type Alzheimer β-amyloid peptides by infrared spectroscopy and circular dichroism. Biochem. Biophys. Res. Commun. 191: 232-239.

    Article  Google Scholar 

  • Gasset, M., Baldwin, M.A., Fletterick, R.J., and Prusiner, S.B. (1993) Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc. Natl. Acad. Sci. USA 90: 1-5.

    Article  ADS  Google Scholar 

  • Guijarro, J.I., Sunde, M., Jones, J.A., Campbell, I.D., and Dobson, C.M. (1998) Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA 95: 4224-4228.

    Article  ADS  Google Scholar 

  • Jahn, T.R. and Radford, S.E. (2005) The Yin and Yang of protein folding. FEBSD J. 272: 5962-5970.

    Article  Google Scholar 

  • Makin, O.S. and Serpell, L.C. (2005) Structures for amyloid fibrils. FEBS J. 272: 5950-5961.

    Article  Google Scholar 

  • Nielsen, L., Frokjaer, S., Carpenter, J.F., and Brange, J. (2001) Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. J. Pharm. Sci. 90: 29-37.

    Article  Google Scholar 

  • Puchtler, H. and Sweat, F. (1965) Congo Red as a Stain for Fluorescence Microscopy of Amyloid. J. of Histochem.Cytochem. 13: 693-694.

    Google Scholar 

  • Stefani, M. and Dobson, C.M. (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81: 678-699.

    Article  Google Scholar 

  • Tycko, R. (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol. 14: 96-103.

    Article  Google Scholar 

  • Virchow, R. (1854) Zur Celluslose-Frage. Virchows Arch. 6: 415-426.

    Google Scholar 

  • Westermark, P. (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272: 5942-5949.

    Article  Google Scholar 

  • Whittingham, J.L., Scott, D.J., Chance, K., Wilson, A., Finch, J., Brange, J., and Dodson, G.G. (2002) Insulin at pH 2: Structural analysis of the conditions promoting insulin fibre formation. J. Mol. Biol. 318: 479-490.

    Article  Google Scholar 

  • Zurdo, J., Guijarro, J.I., Jimenez, J.L., Saibil, H.R., and Dobson, C.M. (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J. Mol. Biol. 311: 325-340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

de la Arada, I., Arrondo, J.L.R. (2007). An Infrared Study of Fibril Formation in Insulin from Different Sources. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_2

Download citation

Publish with us

Policies and ethics