Skip to main content

Functional EPR Spectroscopy and Imaging of Nitroxides

  • Chapter
Supramolecular Structure and Function 9

Absorption and fluorescent probes are particularly effective for studies at the cellular and subcellular levels, while magnetic resonance spectroscopy has the advantage of in vivo applications in animals and humans. Over the past decade, despite formidable technical problems, significant progress has been made regarding in vivo EPR techniques that have much higher sensitivity than NMR for the same probe concentration. However the potential of the EPR-based techniques is still far from being maximally defined, predominantly because of the requirement for exogenous spin probes. Among paramagnetic probes, the nitroxides, stable organic free radicals, provide a wide range of available structures variable in solubility and tissue redistribution, spectral and functional sensitivity, ability to be targeted and their lifetimes in living tissues. Particularly an ability to follow by EPR specific chemical reactivity of the nitroxides towards biologically relevant compounds provides unique functionality to in vivo EPR spectroscopy and imaging. In this contribution we reviewed applications of EPR spectroscopy and imaging of the nitroxides for the probing local chemical environment, including oxygen, redox state, thiols, pH, and nitric oxide, with particular emphasis on in vivo applications.

Keywords EPR spectroscopy, nitroxides, EPR oximetry, spin pH probes, in vivo EPR, thiol-specific spin labels, glutathione, redox state, EPR imaging, PEDRI (Proton-Electron Double Resonance Imaging)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, T., Yoshida, M., Miyamoto, Y., Sato, K., Kohno, M., Sasamoto, K., Miyazaki, K., Ueda, S. and Maeda, H. (1993) Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/NO through a radical reaction. Biochemistry 32(3): 827-32.

    Article  Google Scholar 

  • Albanese, R.A. (1973) On microelectrode distortion of tissue oxygen tensions. J. Theor. Biol. 38(1): 143-54.

    Article  Google Scholar 

  • Alonso, A., dos Santos, W.P., Leonor, S.J., dos Santos, J.G. and Tabak, M. (2001) Stratum corneum protein dynamics as evaluated by a spin-label maleimide derivative: effect of urea. Biophys. J. 81(6): 3566-76.

    Article  Google Scholar 

  • Altenbach, C., Flitsch, S.L., Khorana, H.G. and Hubbell, W.L. (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28(19): 7806-12.

    Article  Google Scholar 

  • Andersson, S., Radner, F., Rydbeek, A., Servin, R. and Wistrand, L.-G. (1996) Free radicals, Nycomed Imaging AS. U.S. Patent 5, 530, 140.

    Google Scholar 

  • Ardenkjaer-Larsen, J.H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L.G., Petersson, J.S. and Golman, K. (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J. Magn. Reson. 133(1): 1-12.

    Article  ADS  Google Scholar 

  • Bacic, G., Nilges, M.J., Magin, R.L., Walczak, T. and Swartz, H.M. (1989) In vivo localized ESR spectroscopy reflecting metabolism. Magn. Reson. Med. 10(2): 266-72.

    Article  Google Scholar 

  • Backer, J.M., Budker, V.G., Eremenko, S.I. and Molin, Y.N. (1977) Detection of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals. Biochim. Biophys. Acta 460(1): 152-6.

    Article  Google Scholar 

  • Baker, J.E., Froncisz, W., Joseph, J. and Kalyanaraman, B. (1997) Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic. Biol. Med. 22(1-2): 109-15.

    Article  Google Scholar 

  • Balcerczyk, A. and Bartosz, G. (2003) Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radic. Res. 37(5): 537-41.

    Article  Google Scholar 

  • Balcerczyk, A., Grzelak, A., Janaszewska, A., Jakubowski, W., Koziol, S., Marszalek, M., Rychlik, B., Soszynski, M., Bilinski, T. and Bartosz, G. (2003) Thiols as major determinants of the total antioxidant capacity. Biofactors 17(1-4): 75-82.

    Article  Google Scholar 

  • Balthasar, W. (1971) Spin labeling studies of D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 22(2): 158-65.

    Article  Google Scholar 

  • Berliner, L.J., Grunwald, J., Hankovszky, H.O. and Hideg, K. (1982) A novel reversible thiolspecific spin label: papain active site labeling and inhibition. Anal. Biochem. 119(2): 450-5.

    Article  Google Scholar 

  • Berliner, L.J., Khramtsov, V., Fujii, H. and Clanton, T.L. (2001) Unique in vivo applications of spin traps. Free Radic. Biol. Med. 30(5): 489-99.

    Article  Google Scholar 

  • Blasig, I.E., Mertsch, K. and Haseloff, R.F. (2002) Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier. Neuropharmacology 43(6): 1006-14.

    Article  Google Scholar 

  • Bobko, A.A., Bagryanskaya, E.G., Reznikov, V.A., Kolosova, N.G., Clanton, T.L. and Khramtsov, V.V. (2004) Redox-sensitive mechanism of no scavenging by nitronyl nitroxides. Free Radic. Biol. Med. 36(2): 248-58.

    Article  Google Scholar 

  • Bobko, A.A., Kirilyuk, I.A., Grigor’ev, I.A., Zweier, J.L. and Khramtsov, V.V. (2007) Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione. Free Rad. Biol. Med. 42(3).

    Google Scholar 

  • Bobko, A.A., Sergeeva, S.V., Bagryanskaya, E.G., Markel, A.L., Khramtsov, V.V., Reznikov, V.A. and Kolosova, N.G. (2005) NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem. Biophys. Res. Commun. 330(2): 367-70.

    Article  Google Scholar 

  • Bratasz, A., Khramtsov, V.V. and Kuppusamy, P. (2003) A modified Tietze assay for the determination of thiols in intact cells and tissues. Free Radic. Biol. Med. 35 (Suppl. 1): S147.

    Google Scholar 

  • Bratasz, A., Weir, N.M., Parinandi, N.L., Zweier, J.L., Sridhar, R., Ignarro, L.J. and Kuppusamy, P. (2006) Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc. Natl. Acad. Sci. USA 103(10): 3914-9.

    Article  ADS  Google Scholar 

  • Breit, G. and Rabi, I.I. (1931) Measurement of nuclear spin. Phys. Rev. 38: 2082-2083.

    Article  ADS  Google Scholar 

  • Cao, B.J. and Reith, M.E. (2002) Nitric oxide scavenger carboxy-PTIO potentiates the inhibition of dopamine uptake by nitric oxide donors. Eur. J. Pharmacol. 448(1): 27-30.

    Article  Google Scholar 

  • Chan, H.C., Glockner, J.F. and Swartz, H.M. (1989) Oximetry in cells and tissues using a nitroxide-liposome system. Biochim. Biophys. Acta 1014(2): 141-4.

    Article  Google Scholar 

  • Clarkson, R.B., Odintsov, B.M., Ceroke, P.J., Ardenkjaer-Larsen, J.H., Fruianu, M. and Belford, R.L. (1998) Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry. Phys. Med. Biol. 43(7): 1907-20.

    Article  Google Scholar 

  • Edelstein, N., Kwok, A. and Maki, A.H. (1964) Effects of hydrostatic pressure on linewidths of free radical in solutions. I. Anisotropic region. J. Chem. Phys. 41: 179-183.

    Article  ADS  Google Scholar 

  • Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1): 70-7.

    Article  Google Scholar 

  • Finkelstein, E., Rosen, G.M. and Rauckman, E.J. (1984) Superoxide-dependent reduction of nitroxides by thiols. Biochim. Biophys. Acta 802: 90-98.

    Google Scholar 

  • Foster, M.A., Grigor’ev, I.A., Lurie, D.J., Khramtsov, V.V., McCallum, S., Panagiotelis, I., Hutchison, J.M., Koptioug, A. and Nicholson, I. (2003) In vivo detection of a pHsensitive nitroxide in the rat stomach by low-field ESR-based techniques. Magn. Reson. Med. 49(3): 558-67.

    Article  Google Scholar 

  • Froncisz, W., Lai, C.S. and Hyde, J.S. (1985) Spin-label oximetry: kinetic study of cell respiration using a rapid-passage T1-sensitive electron spin resonance display. Proc. Natl. Acad. Sci. USA 82(2): 411-5.

    Article  ADS  Google Scholar 

  • Gabbita, S.P., Subramaniam, R., Allouch, F., Carney, J.M. and Butterfield, D.A. (1998) Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation. Biochim. Biophys. Acta 1372(2): 163-73.

    Article  Google Scholar 

  • Gallez, B., Bacic, G., Goda, F., Jiang, J., O’Hara, J.A., Dunn, J.F. and Swartz, H.M. (1996a) Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues: in vivo EPR and MRI studies. Magn. Reson. Med. 35(1): 97-106.

    Article  Google Scholar 

  • Gallez, B., Debuyst, R., Demeure, R., Dejehet, F., Grandin, C., Van Beers, B., Taper, H., Pringot, J. and Dumont, P. (1993) Evaluation of a nitroxyl fatty acid as liver contrast agent for magnetic resonance imaging. Magn. Reson. Med. 30(5): 592-9.

    Article  Google Scholar 

  • Gallez, B., Mader, K. and Swartz, H.M. (1996b) Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study. Magn. Reson. Med. 36 (5): 694-7.

    Article  Google Scholar 

  • Glebska, J., Skolimowski, J., Kudzin, Z., Gwozdzinski, K., Grzelak, A. and Bartosz, G. (2003). Pro-oxidative activity of nitroxides in their reactions with glutathione. Free Radic. Biol. Med. 35(3): 310-6.

    Article  Google Scholar 

  • Glockner, J.F., Chan, H.C. and Swartz, H.M. (1991) In vivo oximetry using a nitroxideliposome system. Magn. Reson. Med. 20(1): 123-33.

    Article  Google Scholar 

  • Glockner, J.F., Norby, S.W. and Swartz, H.M. (1993) Simultaneous measurement of intracellular and extracellular oxygen concentrations using a nitroxide-liposome system. Magn. Reson. Med. 29(1): 12-8.

    Article  Google Scholar 

  • Gnaiger, E. (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir. Physiol. 128(3): 277-97.

    Article  Google Scholar 

  • Griffith, O.H. and McConnell, H.M. (1966) A nitroxide-maleimide spin label. Proc. Natl. Acad. Sci. USA. 55: 8-11.

    Article  ADS  Google Scholar 

  • Guiberteau, T. and Grucker, D. (1997) Dynamic nuclear polarization imaging in very low magnetic fields as a noninvasive technique for oximetry. J. Magn. Reson. 124(1): 263-6.

    Article  ADS  Google Scholar 

  • Halpern, H.J., Yu, C., Peric, M., Barth, E., Grdina, D.J. and Teicher, B.A. (1994) Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc. Natl. Acad. Sci. USA. 91(26): 13047-51.

    Article  ADS  Google Scholar 

  • Haseloff, R.F., Zollner, S., Kirilyuk, I.A., Grigor’ev, I.A., Reszka, R., Bernhardt, R., Mertsch, K., Roloff, B. and Blasig, I.E. (1997) Superoxide-mediated reduction of the nitroxide group can prevent detection of nitric oxide by nitronyl nitroxides. Free Radic. Res. 26(1): 7-17.

    Article  Google Scholar 

  • He, G., Samouilov, A., Kuppusamy, P. and Zweier, J.L. (2002) In vivo imaging of free radicals: applications from mouse to man. Mol. Cell Biochem. 234-235(1-2): 359-67.

    Article  Google Scholar 

  • Hensley, K., Carney, J., Hall, N., Shaw, W. and Butterfield, D.A. (1994) Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure. Free Radic. Biol. Med. 17(4): 321-31.

    Article  Google Scholar 

  • Herzenberg, L.A., De Rosa, S.C., Dubs, J.G., Roederer, M., Anderson, M.T., Ela, S.W., Deresinski, S.C. and Herzenberg, L.A. (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA. 94(5): 1967-72.

    Article  ADS  Google Scholar 

  • Hideg, K., Kalai, T. and Sar, C.P. (2005) Recent results in chemistry and biology of nitroxides. J. Heterocycl. Chem. 42: 437-450.

    Article  Google Scholar 

  • Hubbell, W.L., Cafiso, D.S. and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7(9): 735-9.

    Article  Google Scholar 

  • Hubbell, W.L., McHaourab, H.S., Altenbach, C. and Lietzow, M.A. (1996) Watching proteins move using site-directed spin labeling. Structure 4(7): 779-83.

    Article  Google Scholar 

  • Hyde, J.S., Jin, J.-J., Felix, J.B. and Hubbell, W.L. (1990) Advances in spin label oximetry. Pure & Applied Chem. 62: 255-260.

    Article  Google Scholar 

  • Hyde, J.S. and Subszynski, W.K. (1989) Spin label oximetry. In: Berliner, L.J. and Reubens, J. eds., Spin Labeling: Theory and Application. Plenum Press, New York, Vol. 8, pp. 399-425.

    Google Scholar 

  • Il’yasov, A.V. (1962) Solvent effects in the EPR spectra of certain free radicals. J. Struct. Chem. 3(1): 84-86.

    Article  Google Scholar 

  • Joseph, J., Kalyanaraman, B. and Hyde, J.S. (1993) Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192 (2): 926-34.

    Article  Google Scholar 

  • Khramtsov, V.V. (2005) Biological imaging and spectroscopy of pH. Curr. Org. Chem. 9: 909-923.

    Article  Google Scholar 

  • Khramtsov, V.V., Grigor’ev, I.A., Foster, M.A. and Lurie, D.J. (2004a) In vitro and in vivo measurement of pH and thiols by EPR-based techniques. Antioxid. Redox Signal. 6(3): 667-76.

    Article  Google Scholar 

  • Khramtsov, V.V., Grigor’ev, I.A., Foster, M.A., Lurie, D.J. and Nicholson, I. (2000) Biological applications of spin pH probes. Cell Mol. Biol. 46(8): 1361-74.

    Google Scholar 

  • Khramtsov, V.V., Grigor’ev, I A., Foster, M.A., Lurie, D.J., Zweier, J.L. and Kuppusamy, P. (2004b) Spin pH and SH probes: enhancing functionality of EPR-based techniques. Spectroscopy 18: 213-225.

    Google Scholar 

  • Khramtsov, V.V., Grigor’ev, I.A., Kirilyuk, I.A., Ilangovan, G. and Kuppusamy, P. (2002) In vivo EPR measurement of tissue acidosis during myocardial ischemia using pHsensitive nitroxides. Free Rad. Biol. Med. 33(Suppl. 2): S423-S424.

    Google Scholar 

  • Khramtsov, V.V., Panteleev, M.V. and Weiner, L.M. (1989a) ESR study of proton transport across phospholipid vesicle membranes. J. Biochem. Biophys. Methods 18(3): 237-46.

    Article  Google Scholar 

  • Khramtsov, V.V. and Volodarsky, L.B. (1998) Use of imidazoline nitroxides in studies of chemical reactions. ESR measurements of the concentration and reactivity of protons, thiols and nitric oxide. In: Berliner, L.J., ed., Spin labeling. The next Millennium. Plenum Press, New York, Vol. 14, p. 109-180.

    Google Scholar 

  • Khramtsov, V.V. and Weiner, L.M. (1988) Proton exchange in stable nitroxyl radicals: pH sensitive spin probes. In: Volodarsky, L.B., ed., Imidazoline nitroxides. CRC Press, Boca Raton, FL., Vol. 2, 37-80.

    Google Scholar 

  • Khramtsov, V.V., Weiner, L.M., Grigor’ev, I.A. and Volodarsky, L.B. (1982) Proton exchange in stable nitroxyl radicals. EPR studies of the pH of aqueous solutions. Chem. Phys. Lett. 91: 69-72.

    Article  ADS  Google Scholar 

  • Khramtsov, V.V., Yelinova, V.I., Glazachev Yu, I., Reznikov, V.A. and Zimmer, G. (1997) Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label. J. Biochem. Biophys. Methods 35(2): 115-28.

    Article  Google Scholar 

  • Khramtsov, V.V., Yelinova, V.I., Weiner, L.M., Berezina, T.A., Martin, V.V. and Volodarsky, L.B. (1989b) Quantitative determination of SH groups in low- and highmolecular-weight compounds by an electron spin resonance method. Anal. Biochem. 182 (1): 58-63.

    Article  Google Scholar 

  • Kirilyuk, I.A., Bobko, A.A., Grigor’ev, I.A. and Khramtsov, V.V. (2004) Synthesis of the tetraethyl substituted pH-sensitive nitroxides of imidazole series with enhanced stability towards reduction. Org. Biomol. Chem. 2(7): 1025-30.

    Article  Google Scholar 

  • Kirilyuk, I.A., Bobko, A.A., Khramtsov, V.V. and Grigor’ev, I.A. (2005) Nitroxides with two pK values-useful spin probes for pH monitoring within a broad range. Org. Biomol. Chem. 3(7): 1269-74.

    Article  Google Scholar 

  • Kocherginsky, N. and Swartz, H.M. (1995) Nitroxide spin labels. Reactions in biology and chemistry, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Konczol, F., Lorinczy, D. and Belagyi, J. (1998) Effect of oxygen free radicals on myosin in muscle fibres. FEBS Lett. 427(3): 341-4.

    Article  Google Scholar 

  • Krishna, M.C., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam, N., Cook, J. A., Golman, K., Ardenkjaer-Larsen, J. H., Subramanian, S. and Mitchell, J.B. (2002) Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc. Natl. Acad. Sci. USA 99(4): 2216-21.

    Article  ADS  Google Scholar 

  • Kroll, C., Hermann, W., Stosser, R., Borchert, H.H. and Mader, K. (2001) Influence of drug treatment on the microacidity in rat and human skin-an in vitro electron spin resonance imaging study. Pharm. Res. 18(4): 525-30.

    Article  Google Scholar 

  • Kuppusamy, P., Afeworki, M., Shankar, R.A., Coffin, D., Krishna, M.C., Hahn, S.M., Mitchell, J.B. and Zweier, J.L. (1998) In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res. 58(7): 1562-8.

    Google Scholar 

  • Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D.J., Giannella, E. and Zweier, J.L. (1994) Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc. Natl. Acad. Sci. USA 91 (8): 3388-92.

    Article  ADS  Google Scholar 

  • Kuppusamy, P. and Krishna, M.C. (2002) EPR Imaging of tissue redox status. Current topics in Biophysics 26: 29-34.

    Google Scholar 

  • Kuppusamy, P., Li, H., Ilangovan, G., Cardounel, A.J., Zweier, J.L., Yamada, K., Krishna, M. C. and Mitchell, J.B. (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 62(1): 307-12.

    Google Scholar 

  • Kuppusamy, P. and Zweier, J.L. (2004) Cardiac applications of EPR imaging. NMR Biomed. 17(5): 226-39.

    Article  Google Scholar 

  • Kveder, M., Krisko, A., Pifat, G. and Steinhoff, H.J. (2003) The study of structural accessibility of free thiol groups in human low-density lipoproteins. Biochim. Biophys. Acta 1631(3): 239-45.

    Google Scholar 

  • Lai, C.S., Hopwood, L.E., Hyde, J.S. and Lukiewicz, S. (1982) ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. USA 79(4): 1166-70.

    Article  ADS  Google Scholar 

  • Lebedev, O.A. and Kayanovskii, S.N. (1959) Catalytic oxidation of aliphatic amines with hydrogen peroxide. Trudy po Khimii i Khim. Technologii (Gorkii) 8: 649-652.

    Google Scholar 

  • Lebedev, O.A., Khidekel, M.L. and Razuvaev, G.A. (1961) Isotopic analysis of nitrogen by electron paramagnetic resonance method. Dokladi Akademii Nauk S.S.S.R. 140: 1327-1331.

    Google Scholar 

  • Liu, K.J., Gast, P., Moussavi, M., Norby, S.W., Vahidi, N., Walczak, T., Wu, M. and Swartz, H.M. (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc. Natl. Acad. Sci. USA 90(12): 5438-42.

    Article  ADS  Google Scholar 

  • Liu, K.J., Grinstaff, M.W., Jiang, J., Suslick, K.S., Swartz, H.M. and Wang, W. (1994) In vivo measurement of oxygen concentration using sonochemically synthesized microspheres. Biophys. J. 67(2): 896-901.

    Article  ADS  Google Scholar 

  • Lurie, D.J. (2001) Free radical imaging. Br. J. Radiol. 74(885): 782-4.

    ADS  Google Scholar 

  • Lurie, D.J., Li, H., Petryakov, S. and Zweier, J.L. (2002) Development of a PEDRI freeradical imager using a 0.38 T clinical MRI system. Magn. Reson. Med. 47(1): 181-6.

    Article  Google Scholar 

  • Lurie, D.J., Nicholson, I. and Mallard, J.R. (1991) Low-field EPR measurements by fieldcycled dynamic nuclear polarisation. J. Magn. Res. 95: 405-409.

    Google Scholar 

  • Mader, K., Gallez, B., Liu, K.J. and Swartz, H.M. (1996) Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 17(4): 457-61.

    Article  Google Scholar 

  • Mader, K., Nitschke, S., Stosser, R. and Borchert, H.H. (1997) Non-destructive and localized assessment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial electron paramagnetic resonance imaging. Polymer 38(19): 4785-4794.

    Article  Google Scholar 

  • Marsh, D. and Henderson, P.J. (2001) Specific spin labelling of the sugar-H(+) symporter, GalP, in cell membranes of Escherichia coli: site mobility and overall rotational diffusion of the protein. Biochim. Biophys. Acta 1510(1-2): 464-73.

    Article  Google Scholar 

  • Matsumoto, K., Krishna, M.C. and Mitchell, J.B. (2004) Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol. Exp. Ther. 310(3): 1076-83.

    Article  Google Scholar 

  • Molin, Y.N., Salikhov, K.M. and Zamaraev, K.I. (1980) In: Spin Exchange. Principles and Applications in Chemistry and Biology. Springer-Verlag, Berlin, New York, 242.

    Google Scholar 

  • Mordvintcev, P., Mulsch, A., Busse, R. and Vanin, A. (1991) On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal. Biochem. 199(1): 142-6.

    Article  Google Scholar 

  • Murugesan, R., Cook, J.A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J.A., Mitchell, J.B., Russo, A. and Krishna, M.C. (1997) In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy. Magn. Reson. Med. 38(3): 409-14.

    Article  Google Scholar 

  • Neiman, M.B., Rozatzev, E.G. and Mamedova, Y.G. (1962) Free radical reactions involving no unpaired electrons. Nature 196(3): 472-474.

    Article  ADS  Google Scholar 

  • Nicholson, I., Robb, F.J., McCallum, S.J., Koptioug, A. and Lurie, D.J. (1998) Recent developments in combining LODESR imaging with proton NMR imaging. Phys. Med. Biol. 43(7): 1851-5.

    Article  Google Scholar 

  • Nohl, H., Stolze, K. and Weiner, L.M. (1995) Noninvasive measurement of thiol levels in cells and isolated organs. Methods Enzymol. 251: 191-203.

    Article  Google Scholar 

  • Pake, G.E. and Tuttle, T.R. (1959) Anomalous loss of resolution of paramagnetic resonance hypetfine structure in liquids. Phys. Rev. Lett. 3: 423-425.

    Article  ADS  Google Scholar 

  • Popova, V.I., Leonova, I.N., Weiner, L.M. and Salganik, R.I. (1982) Interaction of the substrate analogue of cytochrome P-450 and mixed function oxidases. Biochem. Pharmacol. 31 (11): 1993-8.

    Article  Google Scholar 

  • Potapenko, D.I., Foster, M.A., Lurie, D.J., Kirilyuk, I.A., Hutchison, J.M., Grigor’ev, I.A., Bagryanskaya, E. G. and Khramtsov, V.V. (2006). Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques. J. Magn. Reson. 182(1): 1-11.

    Article  ADS  Google Scholar 

  • Povich, M.J. (1975) Electron Spin Resonance Oxygen Broadening. J. Phys. Chem. 79: 1106-1109.

    Article  Google Scholar 

  • Presley, T., Kuppusamy, P., Zweier, J.L. and Ilangovan, G. (2006) Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: a consideration of oxygen diffusion interference. Biophys. J. 91(12): 4623-31.

    Article  ADS  Google Scholar 

  • Rabenstein, M.D. and Shin, Y.K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92(18): 8239-43.

    Article  ADS  Google Scholar 

  • Roopnarine, O., Hideg, K. and Thomas, D.D. (1993) Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics. Biophys. J. 64(6): 1896-907.

    Article  ADS  Google Scholar 

  • Rosen, G.M., Porasuphatana, S., Tsai, P., Ambulos, N.P., Galtsev, V.E., Ichikawa, K. and Halpern, H.J. (2003) Dendrimeric-Containing Nitronyl Nitroxides as Spin Traps for Nitric Oxide: Synthesis, Kinetic, and Stability Studies. Macromolecules 36: 1021-1027.

    Article  ADS  Google Scholar 

  • Roshchupkina, G.I., Bobko, A.A., Reznikov, V.A. and Khramtsov, V.V. (2006) Thiol-specific nitroxides for site-directed spin labeling and EPR measurement of thiol content. XXIInd International Conference on Magnetic Resonance in Biological Systems, Goettingen, Germany.

    Google Scholar 

  • Rossi, R., Milzani, A., Dalle-Donne, I., Giustarini, D., Lusini, L., Colombo, R. and Di Simplicio, P. (2002) Blood glutathione disulfide: in vivo factor or in vitro artifact? Clin. Chem. 48(5): 742-53.

    Google Scholar 

  • Samiec, P.S., Drews-Botsch, C., Flagg, E.W., Kurtz, J.C., Sternberg, P., Jr., Reed, R.L. and Jones, D.P. (1998) Glutathione in human plasma: decline in association with aging, agerelated macular degeneration, and diabetes. Free Radic. Biol. Med. 24(5): 699-704.

    Article  Google Scholar 

  • Sarna, T., Duleba, A., Korytowski, W. and Swartz, H. (1980) Interaction of melanin with oxygen. Arch. Biochem. Biophys. 200(1): 140-8.

    Article  Google Scholar 

  • Schafer, F.Q. and Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30(11): 1191-212.

    Article  Google Scholar 

  • Soszynski, M. and Bartosz, G. (1997) Decrease in accessible thiols as an index of oxidative damage to membrane proteins. Free Radic. Biol. Med. 23(3): 463-9.

    Article  Google Scholar 

  • Stone, T.J., Buckman, T., Nordio, P.L. and McConnell, H.M. (1965) Spin-labeled biomolecules. Proc. Natl. Acad. Sci. USA 54(4): 1010-7.

    Article  ADS  Google Scholar 

  • Swartz, H.M. (2004) Using EPR to measure a critical but often unmeasured component of oxidative damage: oxygen. Antioxid. Redox Signal. 6(3): 677-86.

    Article  Google Scholar 

  • Swartz, H.M. and Timmins, G.S. (2000) In: Rhodes, C.J., ed., The metabolism of nitroxides in cells and tissues. Toxicology of the human environment: the critical role of free radicals. Taylor & Francis Inc., London, New York, pp. 91-111.

    Google Scholar 

  • Takeshita, K., Hamada, A. and Utsumi, H. (1999) Mechanisms related to reduction of radical in mouse lung using an L-band ESR spectrometer. Free Radic. Biol. Med. 26(7-8): 951-60.

    Article  Google Scholar 

  • Velan, S.S., Spencer, R.G., Zweier, J.L. and Kuppusamy, P. (2000) Electron paramagnetic resonance oxygen mapping (EPROM): direct visualization of oxygen concentration in tissue. Magn. Reson. Med. 43(6): 804-9.

    Article  Google Scholar 

  • Voinov, M.A., Polienko, J.F., Schanding, T., Bobko, A.A., Khramtsov, V.V., Gatilov, Y.V., Rybalova, T.V., Smirnov, A.I. and Grigor’ev, I.A. (2005) Synthesis, structure and X-band (9.5 GHz) characterization of the new series of pH-sensitive probes: N-Ndisubstituted 4-amino-2,2,5,5-tetramethyl-3-imidazoline 1 Oxyls. J. Org. Chem. 70: 9702-9711.

    Article  Google Scholar 

  • Volodarsky, L.B., Reznikov, V.A. and Ovcharenko, V.I. (1994) Synthetic chemistry of stable nitroxides. CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Weiner, L.M., Hu, H. and Swartz, H.M. (1991) EPR method for the measurement of cellular sulfhydryl groups. FEBS Lett. 290(1-2): 243-6.

    Article  Google Scholar 

  • Woldman, Y., Khramtsov, V.V., Grigor’ev, I.A., Kiriljuk, I.A. and Utepbergenov, D.I. (1994) Spin trapping of nitric oxide by nitronylnitroxides: measurement of the activity of no synthase from rat cerebellum. Biochem. Biophys. Res. Commun. 202(1): 195-203.

    Article  Google Scholar 

  • Yamada, K., Inoue, D., Matsumoto, S. and Utsumi, H. (2004) In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes. Antioxid. Redox Signal. 6(3): 605-11.

    Article  Google Scholar 

  • Yelinova, V., Glazachev, Y., Khramtsov, V., Kudryashova, L., Rykova, V. and Salganik, R. (1996) Studies of human and rat blood under oxidative stress: changes in plasma thiol level, antioxidant enzyme activity, protein carbonyl content, and fluidity of erythrocyte membrane. Biochem. Biophys. Res. Commun. 221(2): 300-3.

    Article  Google Scholar 

  • Yelinova, V.I., Khramtsov, V.V. and Markel, A.L. (1999) Manifestation of oxidative stress in the pathogenesis of arterial hypertension in ISIAH rats. Biochem. Biophys. Res. Commun. 263 (2): 450-3.

    Article  Google Scholar 

  • Zweier, J.L. and Kuppusamy, P. (1988) Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc. Natl. Acad. Sci. USA 85(15): 5703-7.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Khramtsov, V.V. (2007). Functional EPR Spectroscopy and Imaging of Nitroxides. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_10

Download citation

Publish with us

Policies and ethics