Skip to main content

Mechanosensitive Channels Gated by Membrane Tension

Bacteria and Beyond

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

abstract

What are the stimuli that are sensed by mechanoreceptors? Researchers have now begun to address this question and determine the molecular mechanisms underlying channels that are gated by mechanical forces. Two quite different models now exist. The first is that the channels are ‘tethered’ to cytoskeleton and or extracellular components, which thus exert forces on the channel that lead to gating. The second model predicts that the channel protein directly senses biophysical changes that occur within the membrane when it is under tension. Several lines of evidence indicate that many putative mechanosensitive channels are indeed tethered by other proteins, however in many instances the exact role this tethering plays in mechanosensing has yet to be fully clarified. On the other hand, the cloning and study of bacterial mechanosensitive channels demonstrated that channels can directly sense tension within the membrane. Evidence obtained from several of the more complex eukaryotic mechanosensory systems suggests that a number of eukaryotic channels from divergent families similarly sense tension within the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akitake, B., Anishkin, A., and Sukharev, S. (2005) The “dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125 :143–154.

    PubMed  CAS  Google Scholar 

  • Allard, B., Couble, M. L., Magloire, H., and Bleicher, F. (2000) Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 275: 25556–25561.

    PubMed  CAS  Google Scholar 

  • Anishkin, A., Chiang, C. S., and Sukharev, S. (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125 :155–170.

    PubMed  CAS  Google Scholar 

  • Anishkin, A., Gendel, V., Sharifi, N. A., Chiang, C. S., Shirinian, L., Guy, H. R., and Sukharev, S. (2003) On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. The Journal of general physiology 121(3) :227–244.

    PubMed  CAS  Google Scholar 

  • Anishkin, A., and Sukharev, S. (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86 :2883–2895.

    PubMed  CAS  Google Scholar 

  • Awayda, M. S., Shao, W., Guo, F., Zeidel, M., and Hill, W. G. (2004) ENaC-membrane interactions: regulation of channel activity by membrane order. J Gen Physiol 123 :709–727.

    PubMed  CAS  Google Scholar 

  • Bang, H., Kim, Y., and Kim, D. (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275 :17412–17419.

    PubMed  CAS  Google Scholar 

  • Bartlett, J. L., Levin, G., and Blount, P. (2004) An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc Natl Acad Sci U S A 101 :10161–10165.

    PubMed  CAS  Google Scholar 

  • Bartlett, J. L., Li, Y., and Blount, P. (2006) Mechanosensitive channel gating transitions resolved by functional changes upon pore modification. Biophys J 91 :3684–3691.

    PubMed  CAS  Google Scholar 

  • Bass, R. B., Strop, P., Barclay, M., and Rees, D. C. (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298 :1582–1587.

    PubMed  CAS  Google Scholar 

  • Batiza, A. F., Schulz, T., and Masson, P. H. (1996) Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271 :23357–23362.

    PubMed  CAS  Google Scholar 

  • Bayliss, D. A., Talley, E. M., Sirois, J. E., and Lei, Q. (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respiration physiology 129 :159–174.

    PubMed  CAS  Google Scholar 

  • Berrier, C., Besnard, M., Ajouz, B., Coulombe, A., and Ghazi, A. (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151 :175–187.

    PubMed  CAS  Google Scholar 

  • Blount, P., Iscla, I., Li, Y., and Moe, P. C. (2005). The bacterial mechanosensitive channel MscS and its extended family. In Bacterial channels and their eukaryotic homologues, A. Kubalski, and B. Martinac, eds. (Washington, D.C., ASM Press).

    Google Scholar 

  • Blount, P., Iscla, I., Moe, P. C., and Li, Y. (2007). MscL: The bacterial mechanosensitive channel of large conductance. In Mechanosensitive Ion Channels (Volume 58 Current Topics in Membranes series), O. P. Hamill, ed. (St. Louis, MO, Elsievier Press) pp 202–233.

    Google Scholar 

  • Blount, P., and Moe, P. (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends in Microbiol 7 :420–424.

    CAS  Google Scholar 

  • Blount, P., Sukharev, S. I., Moe, P. C., Schroeder, M. J., Guy, H. R., and Kung, C. (1996a) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J 15 :4798–4805.

    CAS  Google Scholar 

  • Blount, P., Sukharev, S. I., Schroeder, M. J., Nagle, S. K., and Kung, C. (1996b) Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Nat Acad Sci USA 93 :11652–11657.

    CAS  Google Scholar 

  • Boyd, D., Manoil, C., and Beckwith, J. (1987) Determinants of membrane protein topology. Proc Nat Acad Sci USA 84 :8525–8529.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., and McClure, F. T. (1962) The amino acid pool in Escherichia coli. Bacteriol Rev 26 :292–335.

    PubMed  CAS  Google Scholar 

  • Buckler, K. J., and Honore, E. (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. The Journal of physiology 562 :213–222.

    PubMed  CAS  Google Scholar 

  • Cantor, R. (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76 :2625–2639.

    PubMed  CAS  Google Scholar 

  • Casado, M., and Ascher, P. (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. The Journal of physiology 513 (Pt 2) :317–330.

    PubMed  CAS  Google Scholar 

  • Caterina, M., Rosen, T., Tominaga, M., Brake, A., and Julius, D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. SO - Nature 1999 Apr 1;398(6726): 436–41 398.

    CAS  Google Scholar 

  • Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389 :816–824.

    PubMed  CAS  Google Scholar 

  • Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282 :2220–2226.

    PubMed  CAS  Google Scholar 

  • Chapman, C. G., Meadows, H. J., Godden, R. J., Campbell, D. A., Duckworth, M., Kelsell, R. E., Murdock, P. R., Randall, A. D., Rennie, G. I., and Gloger, I. S. (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82 :74–83.

    PubMed  CAS  Google Scholar 

  • Chavez, R. A., Gray, A. T., Zhao, B. B., Kindler, C. H., Mazurek, M. J., Mehta, Y., Forsayeth, J. R., and Yost, C. S. (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274 : 7887–7892.

    PubMed  CAS  Google Scholar 

  • Chen, J., and Barritt, G. J. (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. The Biochemical journal 373 :327–336.

    PubMed  CAS  Google Scholar 

  • Chiang, C. S., Anishkin, A., and Sukharev, S. (2004) Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys J 86 :2846–2861.

    PubMed  CAS  Google Scholar 

  • Chiang, C. S., Shirinian, L., and Sukharev, S. (2005) Capping Transmembrane Helices of MscL with Aromatic Residues Changes Channel Response to Membrane Stretch. Biochemistry 44 :12589–12597.

    PubMed  CAS  Google Scholar 

  • Czirjak, G., and Enyedi, P. (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Molecular endocrinology Baltimore, Md 16 :621–629.

    PubMed  CAS  Google Scholar 

  • Davidson, R. M., Tatakis, D. W., and Auerbach, A. L. (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416 :646–651.

    PubMed  CAS  Google Scholar 

  • Deuticke, B. (1968) Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta 163 :494–500.

    PubMed  CAS  Google Scholar 

  • Dopico, A. M., Kirber, M. T., Singer, J. J., and Walsh, J. V., Jr. (1994) Membrane stretch directly activates large conductance Ca(2+)-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertens 7 :82–89.

    PubMed  CAS  Google Scholar 

  • Duprat, F., Girard, C., Jarretou, G., and Lazdunski, M. (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. The Journal of physiology 562 :235–244.

    PubMed  CAS  Google Scholar 

  • Duprat, F., Lesage, F., Patel, A., Fink, M., Romey, G., and Lazdunski, M. (2000) The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Molecular Pharmacology 57 :906–912.

    PubMed  CAS  Google Scholar 

  • Edwards, M. D., Booth, I. R., and Miller, S. (2004) Gating the bacterial mechanosensitive channels: MscS a new paradigm? Current Opinion in Microbiology 7 :163–167.

    PubMed  CAS  Google Scholar 

  • Edwards, M. D., Li, Y., Kim, S., Miller, S., Bartlett, W., Black, S., Dennison, S., Iscla, I., Blount, P., Bowie, J. U., and Booth, I. R. (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12 :113–119.

    PubMed  CAS  Google Scholar 

  • Elmore, D. E., and Dougherty, D. A. (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81 :1345–1359.

    PubMed  CAS  Google Scholar 

  • Elmore, D. E., and Dougherty, D. A. (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85 :1512–1524.

    PubMed  CAS  Google Scholar 

  • Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G., and Sanders, D. (1997) The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419 :259–262.

    PubMed  CAS  Google Scholar 

  • Girard, C., Duprat, F., Terrenoire, C., Tinel, N., Fosset, M., Romey, G., Lazdunski, M., and Lesage, F. (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K(+) channels. Biochemical and biophysical research communications 282 :249–256.

    PubMed  CAS  Google Scholar 

  • Goldstein, S. A., Bayliss, D. A., Kim, D., Lesage, F., Plant, L. D., and Rajan, S. (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57 :527–540.

    PubMed  CAS  Google Scholar 

  • Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G., and Harteneck, C. (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278 :21493–21501.

    PubMed  CAS  Google Scholar 

  • Gu, C. X., Juranka, P. F., and Morris, C. E. (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80 :2678–2693.

    PubMed  CAS  Google Scholar 

  • Guharay, F., and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352 :685–701.

    PubMed  CAS  Google Scholar 

  • Gullingsrud, J., and Schulten, K. (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86 :3496–3509.

    PubMed  CAS  Google Scholar 

  • Gustin, M. C., Zhou, X. L., Martinac, B., and Kung, C. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242 :762–765.

    PubMed  CAS  Google Scholar 

  • Han, J., Kang, D., and Kim, D. (2003) Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. Am J Physiol Cell Physiol 285 : C529–538.

    PubMed  CAS  Google Scholar 

  • Häse, C. C., Le Dain, A. C., and Martinac, B. (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli.J Biol Chem 270 :18329–18334.

    PubMed  Google Scholar 

  • Haswell, E. S. (2007). MscS-like proteins in plants. In Mechanosensitive Ion Channels (Volume 58 Current Topics in Membranes series), O. P. Hamill, ed. (St. Louis, MO, Elsievier Press).

    Google Scholar 

  • Haswell, E. S., and Meyerowitz, E. M. (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16 :1–11.

    PubMed  CAS  Google Scholar 

  • Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G., and Lazdunski, M. (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. Embo J 23 :2684–2695.

    PubMed  CAS  Google Scholar 

  • Iida, H., Nakamura, H., Ono, T., Okumura, M. S., and Anraku, Y. (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Molecular and cellular biology 14 :8259–8271.

    PubMed  CAS  Google Scholar 

  • Iscla, I., Levin, G., Wray, R., Reynolds, R., and Blount, P. (2004) Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys J 87(5): 3172–3180.

    PubMed  CAS  Google Scholar 

  • Ismailov, II, Berdiev, B. K., Shlyonsky, V. G., and Benos, D. J. (1997) Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. Biophys J 72 :1182–1192.

    PubMed  CAS  Google Scholar 

  • Ji, H. L., Fuller, C. M., and Benos, D. J. (1998) Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. The American journal of physiology 275 :C1182–1190.

    PubMed  CAS  Google Scholar 

  • Kang, D., Han, J., Talley, E. M., Bayliss, D. A., and Kim, D. (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. The Journal of physiology 554 :64–77.

    PubMed  CAS  Google Scholar 

  • Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M., and Iida, H. (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285 :882–886.

    PubMed  CAS  Google Scholar 

  • Kim, D. (2003) Fatty acid-sensitive two-pore domain K^+ channels. TRENDS in Pharmacological Sciences 24 :648–654.

    PubMed  CAS  Google Scholar 

  • Kim, Y., Bang, H., and Kim, D. (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275 :9340–9347.

    PubMed  CAS  Google Scholar 

  • Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V., Jr., and Singer, J. J. (1992) Both membrane stretch and fatty acids directly activate large conductance Ca(2+)-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297 :24–28.

    PubMed  CAS  Google Scholar 

  • Kloda, A., Ghazi, A., and Martinac, B. (2006) C-terminal charged cluster of MscL, RKKEE, functions as a pH sensor. Biophys J 90 :1992–1998.

    PubMed  CAS  Google Scholar 

  • Kloda, A., and Martinac, B. (2001) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80 :229–240.

    PubMed  CAS  Google Scholar 

  • Kloda, A., and Martinac, B. (2002) Common evolutionary origins of mechanosensitive ion channels in Archaea, bacteria and cell-walled Eukarya. Archaea 1 :35–44.

    PubMed  CAS  Google Scholar 

  • Koh, S. D., Monaghan, K., Sergeant, G. P., Ro, S., Walker, R. L., Sanders, K. M., and Horowitz, B. (2001) TREK-1 Regulation by Nitric Oxide and cGMP-dependent Protein Kinase. The Journal of Biological Chemistry 276 :44338–44346.

    PubMed  CAS  Google Scholar 

  • Koprowski, P., and Kubalski, A. (1998) Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J Membr Biol 164 :253–262.

    PubMed  CAS  Google Scholar 

  • Koprowski, P., and Kubalski, A. (2003) C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J Biol Chem 278 :11237–11245.

    PubMed  CAS  Google Scholar 

  • Kung, C. (2005) A possible unifying principle for mechanosensation. Nature 436(7051) :647–654.

    PubMed  CAS  Google Scholar 

  • Laitko, U., Juranka, P. F., and Morris, C. E. (2006) Membrane stretch slows the concerted step prior to opening in a Kv channel. J Gen Physiol 127 :687–701.

    PubMed  CAS  Google Scholar 

  • Laitko, U., and Morris, C. E. (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J Gen Physiol 123 :135–154.

    PubMed  Google Scholar 

  • Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G., and Barhanin, J. (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 15 :1004–1011.

    PubMed  CAS  Google Scholar 

  • Lesage, F., and Lazdunski, M. (2000) Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology - Renal Fluid & Electrolyte Physiology 279 :F793-F801.

    CAS  Google Scholar 

  • Levin, G., and Blount, P. (2004) Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys J 86 :2862–2870.

    PubMed  CAS  Google Scholar 

  • Levina, N., Totemeyer, S., Stokes, N. R., Louis, P., Jones, M. A., and Booth, I. R. (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18 :1730–1737.

    PubMed  CAS  Google Scholar 

  • Li, Y., Moe, P. C., Chandrasekaran, S., Booth, I. R., and Blount, P. (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21 :5323–5330.

    PubMed  CAS  Google Scholar 

  • Li, Y., Wray, R., and Blount, P. (2004) Intragenic suppression of gain-of-function mutations in the Escherichia coli mechanosensitive channel, MscL. Mol Microbiol 53 :485–495.

    PubMed  CAS  Google Scholar 

  • Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., Hudspeth, A. J., Friedman, J. M., and Heller, S. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103 :525–535.

    PubMed  CAS  Google Scholar 

  • Macdonald, A. G., and Martinac, B. (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34 :434–441.

    PubMed  CAS  Google Scholar 

  • Maingret, F., Fosset, M., Lesage, F., Lazdunski, M., and Honore, E. (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274 :1381–1387.

    PubMed  CAS  Google Scholar 

  • Maingret, F., Lauritzen, I., Patel, A., Heurteaux, C., Reyes, R., Lesage, F., Lazdunski, M., and Honore, E. (2000a) TREK-1 is a heat-activated background K(+) channel. EMBO J 19 : 2483–2491.

    CAS  Google Scholar 

  • Maingret, F., Patel, A., Lesage, F., Lazdunski, M., and Honore, E. (2000b) Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol Chem 275 :10128–10133.

    CAS  Google Scholar 

  • Mallouk, N., and Allard, B. (2000) Stretch-induced activation of Ca(2+)-activated K(+) channels in mouse skeletal muscle fibers. Am J Physiol Cell Physiol 278 :C473–479.

    PubMed  CAS  Google Scholar 

  • Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., and Hamill, O. P. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7 :179–185.

    PubMed  CAS  Google Scholar 

  • Martinac, B. (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117 :2449–2460.

    PubMed  CAS  Google Scholar 

  • Martinac, B., Adler, J., and Kung, C. (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348 :261–263.

    PubMed  CAS  Google Scholar 

  • Martinac, B., Buechner, M., Delcour, A. H., Adler, J., and Kung, C. (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Nat Acad Sci USA 84 :2297–2301.

    PubMed  CAS  Google Scholar 

  • Martinac, B., and Hamill, O. P. (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99 :4308–4312.

    PubMed  CAS  Google Scholar 

  • Martinac, B., and Kloda, A. (2003) Evolutionary origins of mechanosensitive ion channels. Progress in biophysics and molecular biology 82 :11–24.

    PubMed  CAS  Google Scholar 

  • Matsumoto, T. K., Ellsmore, A. J., Cessna, S. G., Low, P. S., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M. (2002) An osmotically induced cytosolic Ca^2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277 :33075–33080.

    PubMed  CAS  Google Scholar 

  • Maurer, J. A., and Dougherty, D. A. (2003) Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL - Implications for channel gating and evolutionary design. J Biol Chem 278 :21076–21082.

    PubMed  CAS  Google Scholar 

  • McKemy, D. D., Neuhausser, W. M., and Julius, D. (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416 :52–58.

    PubMed  CAS  Google Scholar 

  • McLaggan, D., Jones, M. A., Gouesbet, G., Levina, N., Lindey, S., Epstein, W., and Booth, I. R. (2002) Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Molec Microbiol 43 :521–536.

    CAS  Google Scholar 

  • Meyer, G. R., Gullingsrud, J., Schulten, K., and Martinac, B. (2006) Molecular Dynamics study of MscL interactions with a curved lipid bilayer. Biophys J.

    Google Scholar 

  • Mienville, J., Barker, J. L., and Lange, G. D. (1996) Mechanosensitive properties of BK channels from embryonic rat neuroepithelium. The Journal of membrane biology 153 :211–216.

    PubMed  CAS  Google Scholar 

  • Miller, S., Edwards, M. D., Ozdemir, C., and Booth, I. R. (2003) The closed structure of the MscS mechanosensitive channel - Cross-linking of single cysteine mutants. J Biol Chem 278 :32246–32250.

    PubMed  CAS  Google Scholar 

  • Minke, B. (2006) TRP channels and Ca^+2 signaling. Cell calcium 40 :261–275.

    PubMed  CAS  Google Scholar 

  • Moe, P., and Blount, P. (2005) Assessment of Potential Stimuli for Mechano-Dependent Gating of MscL: Effects of Pressure, Tension, and Lipid Headgroups. Biochemistry 44 :12239–12244.

    PubMed  CAS  Google Scholar 

  • Moe, P. C., Blount, P., and Kung, C. (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Molec Microbiol 28 :583–592.

    CAS  Google Scholar 

  • Moe, P. C., Levin, G., and Blount, P. (2000) Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem 275 :31121–31127.

    PubMed  CAS  Google Scholar 

  • Muller, E. M., Locke, E. G., and Cunningham, K. W. (2001) Differential regulation of two Ca(2+) influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159 :1527–1538.

    PubMed  CAS  Google Scholar 

  • Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., Shigekawa, M., and Imaizumi, Y. (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93 :829–838.

    PubMed  CAS  Google Scholar 

  • Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E., and Zhou, J. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature genetics 33 :129–137.

    PubMed  CAS  Google Scholar 

  • Niemeyer, M. I., Cid, L. P., Barros, L. F., and Sepulveda, F. V. (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276 :43166–43174.

    PubMed  CAS  Google Scholar 

  • Nomura, T., Sokabe, M., and Yoshimura, K. (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91 :2874–2881.

    PubMed  CAS  Google Scholar 

  • Numata, T., Shimizu, T., and Okada, Y. (2006) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol.

    Google Scholar 

  • Okada, K., Moe, P. C., and Blount, P. (2002) Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J Biol Chem 277 :27682–27688.

    PubMed  CAS  Google Scholar 

  • Opsahl, L. R., and Webb, W. W. (1994) Transduction of membrane tension by the ion channel alamethicin. Biophys J 66 :71–74.

    PubMed  CAS  Google Scholar 

  • Ozdirekcan, S., Rijkers, D. T., Liskamp, R. M., and Killian, J. A. (2005) Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. Biochemistry 44 :1004–1012.

    Google Scholar 

  • Pacha, J., Frindt, G., Sackin, H., and Palmer, L. G. (1991) Apical maxi K channels in intercalated cells of CCT. The American journal of physiology 261 :F696–705.

    PubMed  CAS  Google Scholar 

  • Palmer, C. P., Batiza, A., Zhou, X. L., Loukin, S. H., Saimi, Y., and Kung, C. (2004). Ion channels of microbes. In Cell signalling in prokaryotes and lower metazoa, I. Fairweather, ed. (Lkuver Academic Publishers), pp. 325–345.

    Google Scholar 

  • Paoletti, P., and Ascher, P. (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13 :645–655.

    PubMed  CAS  Google Scholar 

  • Park, K. H., Berrier, C., Martinac, B., and Ghazi, A. (2004) Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophys J 86 :2129–2136.

    PubMed  CAS  Google Scholar 

  • Patel, A., and Honoré, E. (2002) The TREK two P domain K$^ +$ channels. J Physiol 539.3 :647.

    Google Scholar 

  • Patel, A., Honore, E., Lesage, F., Fink, M., Romey, G., and Lazdunski, M. (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience 2 :422–426.

    PubMed  CAS  Google Scholar 

  • Patel, A. J., and Honore, E. (2001) Molecular physiology of oxygen-sensitive potassium channels. European Respiratory Journal 18 :221–227.

    PubMed  CAS  Google Scholar 

  • Patel, A. J., Lazdunski, M., and Honoré, E. (2001) Lipid and mechano-gated 2P domain K + channels. Current Opinion in Cell Biology 13 :422–427.

    PubMed  CAS  Google Scholar 

  • Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Earley, T. J., Dragoni, I., McIntyre, P., Bevan, S., and Patapoutian, A. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108 :705–715.

    PubMed  CAS  Google Scholar 

  • Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418 :942–948.

    CAS  Google Scholar 

  • Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118 :193–206.

    PubMed  CAS  Google Scholar 

  • Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct Biol 9 :696–703.

    CAS  Google Scholar 

  • Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y. H., Booth, I. R., and Saier, M. H. (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol R 67 :66–85.

    CAS  Google Scholar 

  • Poolman, B., Blount, P., Folgering, J. H., Friesen, R. H., Moe, P. C., and van der Heide, T. (2002) How do membrane proteins sense water stress? Molec Microbiol 44 :889–902.

    CAS  Google Scholar 

  • Powl, A. M., East, J. M., and Lee, A. G. (2005a) Heterogeneity in the Binding of Lipid Molecules to the Surface of a Membrane Protein: Hot Spots for Anionic Lipids on the Mechanosensitive Channel of Large Conductance MscL and Effects on Conformation. Biochemistry 44 :5873–5883.

    CAS  Google Scholar 

  • Powl, A. M., Wright, J. N., East, J. M., and Lee, A. G. (2005b) Identification of the Hydrophobic Thickness of a Membrane Protein Using Fluorescence Spectroscopy: Studies with the Mechanosensitive Channel MscL(,)(1). Biochemistry 44 :5713–5721.

    CAS  Google Scholar 

  • Qi, Z., Chi, S., Su, X., Naruse, K., and Sokabe, M. (2005) Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol Membr Biol 22 : 519–527.

    PubMed  CAS  Google Scholar 

  • Rajan, S., Wischmeyer, E., Karschin, C., Preisig-Muller, R., Grzeschik, K. H., Daut, J., Karschin, A., and Derst, C. (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276 :7302–7311.

    PubMed  CAS  Google Scholar 

  • Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Muller, R., Daut, J., Karschin, A., and Derst, C. (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 275 :16650–16657.

    PubMed  CAS  Google Scholar 

  • Ricci, A. J., Kachar, B., Gale, J., and Van Netten, S. M. (2006) Mechano-electrical transduction: new insights into old ideas. The Journal of membrane biology 209 :71–88.

    PubMed  CAS  Google Scholar 

  • Sachs, F. (1986) Biophysics of mechanoreception. Membrane biochemistry 6 :173–195.

    PubMed  CAS  Google Scholar 

  • Saint, N., Lacapere, J. J., Gu, L. Q., Ghazi, A., Martinac, B., and Rigaud, J. L. (1998) A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 273 :14667–14670.

    PubMed  CAS  Google Scholar 

  • Schumann, U., Edwards, M. D., Li, C., and Booth, I. R. (2004) The conserved carboxyl-terminus of the MscS mechanosensitive channel is not essential by increases stability and activity. FEBS Lett (in press).

    Google Scholar 

  • Sharif Naeini, R., Witty, M. F., Seguela, P., and Bourque, C. W. (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9 :93–98.

    PubMed  Google Scholar 

  • Sheetz, M. P., Painter, R. G., and Singer, S. J. (1976) Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J Cell Biol 70 :193–203.

    PubMed  CAS  Google Scholar 

  • Smith, G. D., Gunthorpe, M. J., Kelsell, R. E., Hayes, P. D., Reilly, P., Facer, P., Wright, J. E., Jerman, J. C., Walhin, J. P., Ooi, L., Egerton, J., Charles, K. J., Smart, D., Randall, A. D., Anand, P., and Davis, J. B. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418 :186–190.

    PubMed  CAS  Google Scholar 

  • Sokabe, M., Naruse, K., and Qiong-Yao, T. (2004) A new mechanosensitive channel SAKCA and a new MS channel blocker GsTMx-4. Nippon yakurigaku zasshi 124 :301–310.

    PubMed  CAS  Google Scholar 

  • Sotomayor, M., Vasquez, V., Perozo, E., and Schulten, K. (2006) Ion Conduction through MscS as Determined by Electrophysiology and Simulation. Biophys J.

    Google Scholar 

  • Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., and Gill, D. L. (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103 :16586–16591.

    PubMed  CAS  Google Scholar 

  • Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biology 2 :695–702.

    PubMed  CAS  Google Scholar 

  • Sukharev, S. (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83 :290–298.

    PubMed  CAS  Google Scholar 

  • Sukharev, S., Betanzos, M., Chiang, C., and Guy, H. (2001a) The gating mechanism of the large mechanosensitive channel MscL. Nature 409 :720–724.

    CAS  Google Scholar 

  • Sukharev, S., Durell, S., and Guy, H. (2001b) Structural models of the MscL gating mechanism. Biophys J 81 :917–936.

    CAS  Google Scholar 

  • Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R., and Kung, C. (1994a) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368 :265–268.

    CAS  Google Scholar 

  • Sukharev, S. I., Martinac, B., Arshavsky, V. Y., and Kung, C. (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65 :177–183.

    PubMed  CAS  Google Scholar 

  • Sukharev, S. I., Martinac, B., Blount, P., and Kung, C. (1994b) Functional reconstitution as an assay for biochemical isolation of channel proteins: Application to the molecular identification of a bacterial mechanosensitive channel. Methods: A Companion to Methods in Enzymology 6 :51–59.

    CAS  Google Scholar 

  • Sukharev, S. I., Schroeder, M. J., and McCaslin, D. R. (1999a) Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J Membr Biol 171 :183–193.

    CAS  Google Scholar 

  • Sukharev, S. I., Sigurdson, W. J., Kung, C., and Sachs, F. (1999b) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113 :525–540.

    CAS  Google Scholar 

  • Talley, E. M., and Bayliss, D. A. (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277 :17733–17742.

    PubMed  CAS  Google Scholar 

  • Talley, E. M., Lei, Q., Sirois, J. E., and Bayliss, D. A. (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25 :399–410.

    PubMed  CAS  Google Scholar 

  • Tang, Q. Y., Qi, Z., Naruse, K., and Sokabe, M. (2003) Characterization of a functionally expressed stretch-activated BKca channel cloned from chick ventricular myocytes. The Journal of membrane biology 196 :185–200.

    PubMed  CAS  Google Scholar 

  • Tang, Y. W., Cao, G., Chen, X., Yoo, J., Yethiraj, A., and Cui, Q. (2006) A finite element framework for studying the mechanical response of macromolecules: Application to the gating of the mechanosensitive channel MscL. Biophys J.

    Google Scholar 

  • Tavernarakis, N., and Driscoll, M. (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Ann Rev Physiol 59 :659–689.

    CAS  Google Scholar 

  • Tsapis, A., and Kepes, A. (1977) Transient breakdown of the permeability barrier of the membrane of Escherichia coli upon hypoosmotic shock. ,Biochim Biophys Acta 469 :1–12.

    PubMed  CAS  Google Scholar 

  • Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., and Nilius, B. (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101 :396–401.

    PubMed  CAS  Google Scholar 

  • Wiggins, P., and Phillips, R. (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88 :880–902.

    PubMed  CAS  Google Scholar 

  • Wood, J. M. (2006) Osmosensing by bacteria. Sci STKE 2006 :pe43.

    Google Scholar 

  • Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., DiStefano, P. S., Curtis, R., and Clapham, D. E. (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418 :181–186.

    PubMed  CAS  Google Scholar 

  • Yoshimura, K., Nomura, T., and Sokabe, M. (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86 :2113–2120.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Gao, F., Popov, V. L., Wen, J. W., and Hamill, O. P. (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. The Journal of physiology 523 Pt 1 :117–130.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Blount, P., Yuezhou, L., Moe, P.C., Iscla, I. (2008). Mechanosensitive Channels Gated by Membrane Tension. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_3

Download citation

Publish with us

Policies and ethics