Skip to main content

Catalytic Propensity of Amino Acids and the Origins of the Genetic Code and Proteins

  • Chapter
The Codes of Life

Part of the book series: Biosemiotics ((BSEM,volume 1))

The origin of the genetic code is still not fully understood, despite considerable progress in the last decade. Far from being a frozen complete accident, the canonical genetic code is full of patterns that seem to open a window on its evolutionary history. In this chapter we rethink the hypothesis that the primary selective force in favour of the emergence of genetic coding was the added value by amino acids to the RNA world in the form of increased catalytic potential. We identify a novel pattern in the genetic code suggesting that the catalytic propensity of amino acids has considerably shaped its structure. This suggestion complements older ideas arguing in favour of a driving force to build the smallest stable oligopeptide structures, such as hairpins (β-turns stabilized by small β-sheets). We outline experiments to test some of the proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresti JJ, Kelly BT, Jaschke A, Griffiths AD (2005) Selection of ribozymes that catalyse multiple turnover Diels-Alder cycloadditions by using in vitro compartmentalization. Proc Natl Acad Sci USA 102:16170–16175

    Article  CAS  PubMed  Google Scholar 

  • Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Ellington AD Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86:7054–7058

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2003) Biochemistry, Fifth Edition. W. H. Freeman, San Francisco

    Google Scholar 

  • Bloch DP, McArthur B, Mirrop S (1985) tRNA-rRNA sequence homologies: evidence for an ancient modular format shared by tRNAs and rRNAs. BioSystems 17:209–225

    Article  CAS  PubMed  Google Scholar 

  • Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies, Harvard

    Google Scholar 

  • Caporaso JG, Yarus M, Knight R (2005) Error minimization of coding triplet/binding site associations are independent features of the canonical genetic code. J Mol Evol 61:597–607

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC, Brenner S, Klug A, Pieczenik G (1976) A speculation on the origin of protein synthesis. Orig Life 7:389–397

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (1996) The β-sheets of proteins, the biosynthetic relationships between amino acids, and the origin of the genetic code. Orig Life Evol Biosph 26(6):589–609

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2006) Nanoarchaeum equitans is a living fossil. J Theor Biol 242:257–260

    Article  PubMed  Google Scholar 

  • Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giege R, Cambillau C, Lapointe J, Kern D (2004) An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc Natl Acad Sci USA 101:7030–7035

    Google Scholar 

  • Fan K, Wang W (2003) What is the minimum number of letters required to fold a protein? J Mol Biol 328:921–926

    Article  CAS  PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    CAS  PubMed  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Grosjean H, De Crécy-Lagard V, Björk GR (2004) Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code? Trends Biochem Sci 29:519–522

    Article  CAS  PubMed  Google Scholar 

  • Hartigan JA (1975) Clustering Algorithms, Wiley, New York

    Google Scholar 

  • Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  CAS  PubMed  Google Scholar 

  • Ho CK (1988) Primitive ancestry of transfer RNA. Nature 333:24

    Article  CAS  PubMed  Google Scholar 

  • Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267:643–647

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Smith TF (1987) β-turn driven early evolution: the genetic code and biosynthetic pathways. J Mol Evol 25:151–159

    Article  Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acid Res. 32:D129–D133

    Article  CAS  PubMed  Google Scholar 

  • Knight RD, Landweber LF (2000) Guilt by association: the arginine case revisited. RNA 6:499–510

    Article  CAS  PubMed  Google Scholar 

  • Kumar RK, Yarus M (2001) RNA-catalyzed amino acid activation. Biochemistry 40:6998–7004

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Bessho Y, Wei K, Szostak JW, Suga H (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7:28–33

    Article  CAS  PubMed  Google Scholar 

  • Lesk AM (2001) Introduction to Protein Architecture. Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The Major Transitions in Evolution. Freeman, Oxford

    Google Scholar 

  • Miller SL (1986) Current status of the prebiotic synthesis of small molecules. Chem Scr 26B:5–11

    CAS  PubMed  Google Scholar 

  • Moore PB, Steitz TA (2002) The involvement of RNA in ribosome function. Nature 418:229–235

    Article  CAS  PubMed  Google Scholar 

  • Muñoz V, Serrano L (1994) Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices. Comparison with experimental scales. Proteins 20:301–311

    Article  PubMed  Google Scholar 

  • Nazarea AD, Bloch DP, Semrau AC (1985) Detection of a fundamental modular format common to transfer and ribosomal RNAs: second-order spectral analysis. Proc Natl Acad Sci USA 82:5337–5341

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1977) β-Turns and the evolution of protein synthesis. In: Bradbury EM, Javaherian K (eds) The Organization and Expression of the Eukaryotic Genome. Academic Press, London, pp. 499–504

    Google Scholar 

  • Prevelige JP, Fasman G (1989) Chou-Fasman prediction of the secondary structure of proteins: the Chou-Fasman-Prevelige algorithm. In: Fasman G (ed.) Prediction of Protein Structure and the Principles of Protein Confoimation. Plenum, New York, pp. 391–416

    Google Scholar 

  • Randau L, Munch R, Hohn MJ, Jahn D, Söll D (2005a) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5ʹ- and 3ʹ-halves. Nature 433:537–541

    Article  CAS  PubMed  Google Scholar 

  • Randau L, Pearson M, Söll D (2005b) The complete set of tRNA species in Nanoarchaeum equitans. FEBS Lett 579:2945–2947

    Article  CAS  PubMed  Google Scholar 

  • Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, Söll D (2005c) The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci USA 102:17934–17939

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2004) A Language And Environment For Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reinhold-Hurek B, Shub DA (1992) Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357:173–176

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Ohno S, Rodin A (1993) Transfer RNAs with complementary anticodons: could they reflect early evolution of discriminative genetic code adaptors?

    Google Scholar 

  • Proc Natl Acad Sci USA 90:4723–4727

    Google Scholar 

  • Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Breaker RR (1998) An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci USA 95:6027–6031

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Yang L, Miller SL, Oró J (1990) Prebiotic synthesis of histidine. J Mol Evol 31:167–174

    Article  CAS  PubMed  Google Scholar 

  • Söding J, Lupas AN (2003) More than the sum of their parts: on the evolution of proteins from peptides. BioEssays 25:837–846

    Article  PubMed  Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry E (1990) Useful coding before translation: the coding coenzymes handle hypothesis for the origin of the genetic code. In: Lukács B. et al. (eds) Evolution: from Cosmogenesis to Biogenesis. KFKI-1990–50/C, Budapest, pp. 77–83

    Google Scholar 

  • Szathmáry E (1991) Four letters in the genetic alphabet: a frozen evolutionary optimum? Proc R Soc Lond B 245:91–99

    Article  Google Scholar 

  • Szathmáry E (1992) What determines the size of the genetic alphabet? Proc Natl Acad Sci USA 89:2614–2618

    Article  PubMed  Google Scholar 

  • Szathmáry E (1993) Coding coenzyme handles: A hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA 90:9916–9920

    Article  PubMed  Google Scholar 

  • Szathmáry E (1996) Coding coenzyme handles and the origin of the genetic code. In: Müller A, Dress A, Vögtle F (eds) From Simplicity to Complexity in Chemistry – and Beyond. Part I. Vieweg, Braunschweig, pp. 33–41

    Google Scholar 

  • Szathmáry E (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet 15:223–229

    Article  PubMed  Google Scholar 

  • Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Phil Trans R Soc B DOI: 10.1098/rstb.2007.2070

    Google Scholar 

  • Taillades J, Beuzelin I, Garrel L, Tabacik V, Bied C, Commeyras A (1998) N-carbamoyl-alpha-amino acids rather than free alpha-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Orig Life Evol Biosph 28:61–77

    Article  CAS  PubMed  Google Scholar 

  • Taylor FJ, Coates D (1989) The Code within the codons. Biosystems 22:177–187

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR (1986) The classification of amino acid conservation. J Theor Biol 119:205–218

    Article  CAS  PubMed  Google Scholar 

  • Tsukiji S, Pattnaik SB, Suga H (2004) Reduction of aldehyde by a NADH/Zn2+-dependent redox active ribozyme. J Am Chem Soc 126:5044–5045

    Article  CAS  PubMed  Google Scholar 

  • Walter KU, Vamvaca K, Hilvert D (2005) An active enzyme constructed from a 9-amino acid alphabet. J Biol Chem 45:37742–37746

    Article  Google Scholar 

  • Wetzel R (1995) Evolution of the aminoacyl-tRNA synthetases and the origin of the genetic code. J Mol Evol 40:545–550

    Article  CAS  PubMed  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1972) The emergence of genetic organization. In: Ponnamperuma, C. (ed.) Exobiology. North-Holland Publishing, Amsterdam, The Netherlands, pp. 301–341

    Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1991) Origin of genetically encoded protein synthesis: a model based on selection for RNA peptidation. Orig Life Evol Biosph 21:165–176

    Article  CAS  PubMed  Google Scholar 

  • Wong JT Bronskill PM (1979) Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Yarus M (1989) Specificity of arginine binding by the Tetrahymena intron. Biochemistry 28:980–988

    Article  CAS  PubMed  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem 74:179–198

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1998) Biostatistical Analysis (4th Edition). Prentice Hall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Kun, Á., Pongor, S., Jordán, F., Szathmáry, E. (2008). Catalytic Propensity of Amino Acids and the Origins of the Genetic Code and Proteins. In: Barbieri, M., Hoffmeyer, J. (eds) The Codes of Life. Biosemiotics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6340-4_3

Download citation

Publish with us

Policies and ethics