Skip to main content

Molecular Markers and QTL Analysis for Grain Quality Improvement in Wheat

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Molecular marker technology is playing an increasingly important role in the selection of wheat lines with improved quality attributes. This is due to the identification of molecular markers tightly linked to chromosome regions involved in the control of important quality characteristics such as dough properties, grain hardness, semolina and flour colour, grain protein content and starch composition, which strongly influence wheat end use, and its nutritional and market value. Marker assisted selection (MAS) will increase the efficiency of the breeding process, particularly when phenotyping requires laborious and time-consuming analyses, performed in advanced generations because of the relatively large amount of grain required. Moreover, the implementation of MAS allows the selection of individuals carrying the favourable alleles at the target loci, and also the pyramiding of favourable QTL alleles from different sources and for different traits. This not withstanding, the progress obtained until now in applying MAS to quality characteristics has been slow compared to other traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AACC (2003a) 39–70A Near-infrared reflectance method for hardness determination in wheat; 55–31 Single-Kernel characterization system for wheat kernel texture. In: Approved methods of the American association of cereal chemists – 10th edition – Including 2001, 2002 and 2003 Supplements, St. Paul, MN

    Google Scholar 

  • AACC (2003b) 14–10 Pekar color text (Slick Test). 14–30 Agtron color test for flour; 14–50 determination of pigments. In: Approved methods of the American association of cereal chemists – 10th edition – Including 2001, 2002 and 2003 Supplements, St. Paul, MN

    Google Scholar 

  • Abdel-Aal ESM, Young JC, Wood PJ, Rabalski I, Hucl P, Falk D, Fregeau-Reid J (2002) Einkorn: a potential candidate for developing high lutein wheat. Cereal Chem 79:455–457

    CAS  Google Scholar 

  • Ahmad M (2000) Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet 101:892–896

    CAS  Google Scholar 

  • Alvarez JB, Martin LM, Martin A (1998) Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breed 117:287–289

    CAS  Google Scholar 

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    PubMed  CAS  Google Scholar 

  • Arbelbide M, Bernardo R (2006) Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet 112:885–890

    PubMed  CAS  Google Scholar 

  • Atienza SG, Ramirez CM, Hernandez P, Martin A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304

    CAS  Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium, New Delhi, India. Indian Society of Genetics and Plant Breeding (ISGPB), pp 372–380

    Google Scholar 

  • Ballesteros J, Ramirez MC, Martinez C, Atienza SG, Martin A (2005) Registration of HT621, a high carotenoid content Tritordeum germplasm line. Crop Sci 45:2662–2663

    Google Scholar 

  • Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos KM, Gale MD (1996) Quantitative trait loci influencing grain protein content in tetraploid wheat. Plant Breed 115:310–316

    Google Scholar 

  • Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheat. Plant Mol Biol 48:615–623

    PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    PubMed  CAS  Google Scholar 

  • Boggini G, Pogna NE (1989) The breadmaking quality and storage protein composition of durum wheat. J Cereal Sci 9:131–138

    CAS  Google Scholar 

  • Boggini G, Cattaneo M, Paganoni C, Vaccino P (2001) Genetic variation for waxy proteins and starch properties in Italian wheat germplasm. Euphytica 119:111–114

    CAS  Google Scholar 

  • Borrelli GM, Troccoli A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem 76:335–340

    CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Google Scholar 

  • Briney A, Wilson R, Potter RH, Barclay I, Crosbie G, Appels R, Jones MGK (1998) A PCR-based marker for selection of starch and potential noodle quality in wheat. Mol Breed 4:427–433

    CAS  Google Scholar 

  • Brouns F, Kettlitz B, Arrigoni E (2002) Resistant starch and “the butyrate revolution”. Trends Food Sci Technol 13:251–261

    CAS  Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E, Geibel M, Fischer C (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Horticulturae 538:541–547

    Google Scholar 

  • Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O, Morell MK, Bekes F (2003) Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high molecular weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet 107:1524–1532

    PubMed  CAS  Google Scholar 

  • Butow BJ, Gale KR, Ikea J, Juhász A, Bedö Z, Tamás L, Gianibelli MC (2004) Dissemination of the highly expressed Bx7 glutenin subunit (GluB1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109:1525–1535

    PubMed  CAS  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrels ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a Soft X Hard wheat cross. Crop Sci 39:1184–1195

    CAS  Google Scholar 

  • Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31:645–649

    Google Scholar 

  • Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes for coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917

    PubMed  CAS  Google Scholar 

  • Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosophate synthase with geranylgeranyl synthase activity. Plant Physiol 141:220–231

    PubMed  CAS  Google Scholar 

  • CIE (1986) Colorimetry. Publication 15.2, 2nd ed, Central Bureau of the Commission Internationale de l’Eclairage, Wien, Austria

    Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness. Theor Appl Genet 110:1259–1267

    PubMed  CAS  Google Scholar 

  • Cloutier S, Rampitsch C, Penner GA, Lukow OM (2001) Cloning and expression of a LMW-i glutenin gene. J Cereal Sci 33:143–154

    CAS  Google Scholar 

  • Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111:1409–1419

    PubMed  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    PubMed  CAS  Google Scholar 

  • De Bustos A, Rubio P, Jouve N (2000) Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of ASPCR markers for HMW glutenins of wheat. Theor Appl Genet 100:1085–1094

    Google Scholar 

  • De Bustos A, Rubio P, Soler C, Garcia P, Jouve N (2001) Marker assisted selection to improve HMW-glutenins in wheat. Euphytica 119:69–73

    Google Scholar 

  • D’Egidio MG, Mariani BM, Nardi S, Novaro P, Cubadda R (1990) Chemical and technological variables and their relationships: a predictive value equation for pasta cooking quality. Cereal Chem 67:275–281

    Google Scholar 

  • D’Ovidio R (1993) Single-seed PCR of LMW glutenin genes to distinguish between durum wheat cultivars with good and poor technological properties. Plant Mol Biol 22:1173–1176

    PubMed  CAS  Google Scholar 

  • D’Ovidio R, Anderson OD (1994) PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet 88:759–763

    CAS  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    CAS  Google Scholar 

  • D’Ovidio R, Porceddu E (1996) PCR-based assay for detecting 1B-genes for low molecular weight glutenin subunits related to gluten quality properties in durum wheat. Plant Breed 115:413–415

    CAS  Google Scholar 

  • D’Ovidio R, Porceddu E, Lafiandra D (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor Appl Genet 88:175–180

    CAS  Google Scholar 

  • D’Ovidio R, Masci S, Porceddu E (1995) Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor Appl Genet 91:189–194

    CAS  Google Scholar 

  • D’Ovidio R, Masci S, Porceddu E, Kasarda DD (1997) Duplication of the Bx7 high-molecular-weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar Red River 68. Plant Breed 116:525–531

    CAS  Google Scholar 

  • Dexter JE, Marchylo BA (2000) Recent trends in durum wheat milling and pasta processing: impact on durum wheat quality requirements. In: Abecassis J, Autran JC, Feillet P (eds) International workshop on durum wheat, semolina and pasta quality, Montpellier, France, November 27, (Colloques de l’INRA, Inst Natl Recherche Agronomique: Paris), pp 139–164

    Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6 and a 350-kb region on rice chromosome 2. Funct Integr Genom 4:59–66

    CAS  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    PubMed  CAS  Google Scholar 

  • Eagles HA, Cane K, Eastwood RF, Hollamby GJ, Kuchel H, Martin PJ, Cornish GB (2006) Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Aust J Agric Res 57:179–186

    CAS  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    PubMed  CAS  Google Scholar 

  • Finney KF, Barrimore MA (1948) Loaf volume and protein content of hard winter and spring wheat. Cereal Chem 25:291–312

    CAS  Google Scholar 

  • Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat–rice synteny and identification of potential markers for genes controlling xanthophylls content in wheat. Funct Integr Genom 4:118–130

    CAS  Google Scholar 

  • Fratianni A, Irano M, Panfili G, Acquistucci R (2005) Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem 53:2373–2378

    PubMed  CAS  Google Scholar 

  • Galande AA, Tiwari R, Ammiraju JSS, Santra DK, Lagu MD, Rao VS, Gupta VS, Misra BK, Nagarajan S, Ranjekar PK (2001) Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor Appl Genet 103:601–606

    CAS  Google Scholar 

  • Gale KR (2005) Diagnostic DNA markers for quality traits in wheat. J Cereal Sci 41:181–192

    CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    PubMed  CAS  Google Scholar 

  • Gedye KR, Morris CF, Bettge AD (2004) Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theor Appl Genet 109:1597–1603

    PubMed  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    CAS  Google Scholar 

  • Grama A, Gerechter-Amiti ZK, Blum A, Rubenthaler GL (1984) Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides. In: Cereal grain improvement. Int. Atomic Energy Agency, Series 681-E, Vienna, pp 145–153

    Google Scholar 

  • Graybosch RA, Peterson CJ, Hansen LE, Rahman S, Hill AS, Skerritt JH (1998) Identification and characterisation of US wheat carrying null alleles at the wx loci. Cereal Chem 75:162–165

    CAS  Google Scholar 

  • Greene FC, Anderson OD, Yip RE, Halford NG, Malpica Romero J-M, Shewry PR (1988) Analysis of possible quality related sequence variations in the 1D glutenin high-molecular-weight subunit genes of wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. Bath Press, Bath, UK, pp 699–704

    Google Scholar 

  • Greenwell P, Schofield JD (1986) A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63:379–380

    CAS  Google Scholar 

  • Harjit-Singh PM, Prasad M, Varshney RK, Roy JK, Baylan HS, Dhaliwal HS, Gupta PK (2001) STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breed 120:273–278

    CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohn V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    PubMed  CAS  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42:1695–1700

    CAS  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Color genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    PubMed  CAS  Google Scholar 

  • Howitt CA, Gale KR, Juhász A (2006) Diagnostic markers for auality. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. Am Assoc Cereal Chem, St. Paul, MN, USA, pp 243–280

    Google Scholar 

  • Hu X, Ribaut JM, Gonzales de Leon D (1997) Development of PCR-based markers to facilitate large-scale screening in molecular maize breeding. Maize Genet Coop Newsl 71:61–62

    Google Scholar 

  • Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G (2002) Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106:19–27

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet 104:680–687

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Araki E, Fujita Y, Yano H (2006) Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheat. Theor Appl Genet 112:327–334

    PubMed  CAS  Google Scholar 

  • Jackson EA, Holt LM, Payne PI (1983) Characterisation of high-molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theor Appl Genet 66:29–37

    CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    PubMed  CAS  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    CAS  Google Scholar 

  • Joppa LR, Hareland GA, Cantrell RG (1991) Quality characteristics of the Langdon durum-dicoccoides chromosome substitution lines. Crop Sci 31:1513–1517

    Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Juhász A, Gianibelli MC (2006) Low-molecular-weight glutenin subunits: insight into this abundant subunit group present in glutenin polymers. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. Am Assoc Cereal Chem, St. Paul, MN, USA, pp 171–212

    Google Scholar 

  • Jurman I, Castelluccio MD, Wolf M, Olivieri A, De Ambrogio E, Morgante M (2004) Construction of an SSR based linkage map and associated QTLs in durum wheat. Proceedings of the XLVIII SIFV-SIGA Joint Meeting, Lecce, Italy, September 15–18, ISBN 88-900622-5-8 Oral communication abstract 405

    Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    CAS  Google Scholar 

  • Koebner R (2003) MAS in cereals: green for maize, amber for rice, still red for wheat and barley. In: Marker assisted selection: a fast track to increase genetic gain in plant and animal breeding. Turin, Italy, October 17–18, FAO, Rome. http://www.fao.org/biotech/docs/Koebner.pdf

    Google Scholar 

  • Lafiandra D, D’Ovidio R, Porceddu E, Margiotta B, Colaprico G (1993) New data supporting high Mr glutenin subunit 5 as determinant of quality differences among the pairs 5+10 vs 2+12. J Cereal Sci 18:197–205

    CAS  Google Scholar 

  • Lafiandra D, Tucci GF, Pavoni A, Turchetta T, Margiotta B (1997) PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theor Appl Genet 94:235–240

    CAS  Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    CAS  Google Scholar 

  • Lee MR, Swanson BG, Baik BK (2001) Influence of amylase content on properties of wheat starch and breadmaking quality of starch and gluten blends. Cereal Chem 78:701–706

    CAS  Google Scholar 

  • Lei ZS, Gale KR, He ZH, Gianibelli MC, Larroque O, Xia XC, Butow BJ, Ma W (2006) Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci 43:94–101

    CAS  Google Scholar 

  • Lepage M, Sims RPA (1968) Carotenoids of wheat flour: their identification and composition. Cereal Chem 45:600–604

    CAS  Google Scholar 

  • Lillemo M, Morris CF (2000) A leucine to proline mutation in puroindoline b is frequently present in hard wheat from Northern Europe. Theor Appl Genet 100:1100–1107

    CAS  Google Scholar 

  • Long H, Wei YM, Yan ZH, Baum B, Nevo E, Zheng YL (2006) Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor Appl Genet 111:1251–1259

    Google Scholar 

  • Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51–60

    CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli V, Araus Ortega JL, Ben Salem M, Bort J, Chenenaoui C, De Ambrogio E, Garcia del Moral L, De Montis A, El-Ahmed A, Maalouf F, Machlab H, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Tuberosa R (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Gen Res 4:79–85

    CAS  Google Scholar 

  • Maghirang EB, Dowell FE (2003) Hardness measurements of bulk wheat by single-kernel visible and near-infrared reflectance spectroscopy. Cereal Chem 80:316–322

    CAS  Google Scholar 

  • Marchylo BA, Lukow OM, Kruger JE (1992) Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheat. J Cereal Sci 15:29–37

    CAS  Google Scholar 

  • Marchylo BA, Dexter JE, Clarke JM, Ames N (1998) Effects of protein content on CWAD quality. In: Fowler DB, Geddes WE, Johnston AM, Preston KR (eds) Wheat protein production and marketing. Proceedings of the wheat protein symposium, Saskatoon, Canada, March. University Extension Press, University of Saskatchewan, Saskatoon, pp 53–62

    Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    CAS  Google Scholar 

  • Martin A, Cabrera A, Hernandez P, Ramirez MC, Rubiales D, Ballesteros J (2000) Prospect for the use of Hordeum chilense in durum wheat breeding. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Proceedings of the seminar on “Durum wheat improvement in the Mediterranean region: new challenges”, Zaragoza, Spain, April 12–14, Options Méditerranéennes, Serie A, Séminaires Méditerranéens, 40:111–115

    Google Scholar 

  • Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41:228–234

    CAS  Google Scholar 

  • Massa AN, Morris CF, Gill BS (2004) Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii coss. Crop Sci 44:1808–1816

    CAS  Google Scholar 

  • Mattern PJ, Morris R, Schmidt JW, Johnson VA (1973) Locations of genes for kernel properties in the wheat variety ‘Cheyenne’ using chromosome substitution lines. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium, August 6–11, University of Missouri, Columbia, MO, pp 703–707

    Google Scholar 

  • McLauchlan A, Ogbonnaya FC, Hollingsworth B, Carter M, Gale KR, Henry RJ, Holten TA, Morell MK, Rampling LR, Sharp PJ, Shariflou MR, Jones MGK, Appels R (2001) Development of robust-PCR-based DNA markers for each homeoallele of granule-bound starch synthase and their application in wheat breeding programs. Aust J Agric Res 52:1409–1416

    CAS  Google Scholar 

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513

    CAS  Google Scholar 

  • Miura H, Tanii S (1994) Endosperm starch properties in several wheat cultivars preferred for Japanese noodles. Euphytica 72:171–175

    Google Scholar 

  • Miura H, Tanii S, Nakamura T, Watanabe N (1994) Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor Appl Genet 89:276–280

    CAS  Google Scholar 

  • Miura H, Araki E, Tarui S (1999) Amylose synthesis capacity of the three Wx genes of wheat cv Chinese spring. Euphytica 108:91–95

    CAS  Google Scholar 

  • Monari AM, Simeone MC, Urbano M, Margotta B, Lafiandra D (2005) Molecular characterization of new waxy mutants identified in bread and durum wheat. Theor Appl Genet 110:1481–1489

    PubMed  CAS  Google Scholar 

  • Morris CF, Lillemo M, Simeone MC, Giroux MJ, Babb SL, Kidwell KK (2001) Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheat. Crop Sci 41:218–228

    CAS  Google Scholar 

  • Murai J, Taira T, Oht D (1999) Isolation and characterisation of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234:71–79

    PubMed  CAS  Google Scholar 

  • Nachit MM, Baum M, Impiglia A, Ketata H (1995) Studies on some grain quality traits in durum wheat grown in Mediterranean environments. In: Di Fonzo N, Kaan F, Nachit M (eds) Proceedings of the seminar on “Durum wheat improvement in the Mediterranean region”, Zaragoza, Spain, November 17–19, 1993, Options Méditerranéennes, Série A, Séminaires Méditerranéens, 22:181–187

    Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993) Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem Genet 31:75–86

    Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheat. Mol Gen Genet 248:253–259

    PubMed  CAS  Google Scholar 

  • Nakamura T, Vrinten P, Saito M, Konda M (2002) Rapid classification of partial waxy wheat using PCR-based markers. Genome 45:1150–1156

    Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    PubMed  CAS  Google Scholar 

  • Olmos S, Diestelfeld A, Chicaiza O, Schatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    PubMed  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    PubMed  CAS  Google Scholar 

  • Parker GD, Langridge P (2000) Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.). Mol Breed 6:169–174

    CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    CAS  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on break making quality. Ann Rev Plant Physiol 38:141–153

    CAS  Google Scholar 

  • Payne PI, Jackson EA, Holt LM (1984) The association between γ-gliadin 45 and gluten strength in durum wheat varieties: a direct causal effect or the result of genetic linkage? J Cereal Sci 2:73–81

    CAS  Google Scholar 

  • Peleman J, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    PubMed  CAS  Google Scholar 

  • Peña RJ, Pfeiffer WH (2005) Breeding methodologies and strategies for durum wheat quality improvement. In: Royo C, Nachit MM, Di Fondo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding. Current approaches and future strategies. Food Product Press, Binghamton, NY, pp 663–703

    Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    CAS  Google Scholar 

  • Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990) Chromosome 1B encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci 11:15–34

    CAS  Google Scholar 

  • Porceddu E (1995) Durum wheat quality in the Mediterranean countries. In: Di Fonzo N, Kaan F, Nachit M (eds) Proceedings of the seminar on “Durum wheat quality in the Mediterranean region”, Zaragoza, Spain, November 17–19, 1993, Options Méditerranéennes, Série A, Séminaires Méditerranéens, 22:11–21

    Google Scholar 

  • Pozniak CJ, Suprayogi Y, Knoz RE, Clarke FR, Clarke JM (2006) Genetic mapping of a phytoene synthase gene family from durum wheat. Plant & animal genome XIV conference, January 14–18, San Diego, CA, Poster P350, p 189

    Google Scholar 

  • Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Google Scholar 

  • Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breed 12:51–59

    CAS  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    PubMed  CAS  Google Scholar 

  • Ragot M, Gay G, Muller JP, Durovray J (2000) Efficient selection for adaptation to the environment through QTL mapping and manipulation in maize. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. Workshop held at CIMMYT, El Batán, Mexico, June 21–25, 1999, pp 128–130

    Google Scholar 

  • Ribaut JM, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 31:236–239

    Google Scholar 

  • Salmanowicz BP, Moczulski M (2004) Multiplex polymerase chain reaction analysis of Glu-1 high-molecular-mass glutenin genes from wheat by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1032:313–318

    PubMed  CAS  Google Scholar 

  • Salvi S, Phillips RL, Tuberosa R (2001) Development of PCR-based assays for allelic discrimination in maize by using the 5-nuclease procedure. Mol Breed 8:169–176

    CAS  Google Scholar 

  • Schwarz G, Felsenstein FG, Wenzel G (2004) Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theor Appl Genet 109:1064–1069

    PubMed  CAS  Google Scholar 

  • Shariflou MR, Hassani M, Sharp PJ (2001) A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat. Plant Breed 120:121–124

    CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) The genetics of wheat gluten proteins. Adv Genet 49:111–184

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2006) The high-molecular-weight subunits of glutenin. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. Am Assoc Cereal Chem, St. Paul, MN, USA, pp 143–169

    Google Scholar 

  • Shimbata T, Nakamura T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H (2005) Mutations in wheat starch synthase II genes and PCR-based selection of a SGP-1 null line. Theor Appl Genet 111:1072–1079

    PubMed  CAS  Google Scholar 

  • Smith RL, Schweder ME, Barnett RD (1994) Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Sci 34:1373–1378

    CAS  Google Scholar 

  • Snape JW, Hyne V, Aitken K (1995) Targeting genes in wheat using marker-mediated approaches. In: Li ZS, Xin ZY (eds) Proceedings of the 8th international wheat genetics symposium, Beijing, July 20–25, 1993, China Agric Scientech Press, Beijing, China, pp 749–759

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004a) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  Google Scholar 

  • Somma S, Cenci A, Mangini G, Blanco A (2004b) Detection of QTL for carotenoid pigment content in durum wheat. Proceedings of the XLVIII SIFV-SIGA joint meeting Lecce, Italy, September 15–18, ISBN 88-900622-5-8 Poster abstract H.03

    Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    PubMed  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Cadalen T, Tixier MH, Joudrier P, Gautier MF, Branlard G, Bernard S, Boeuf C, Bernard M (1999) Detection of QTL for bread making quality in wheat using molecular markers. In: Scarascia Mugnozza GT, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance. Kluwer, Netherlands, pp 361–366

    Google Scholar 

  • Symes KJ (1965) The inheritance of grain hardness in wheat as measured by the particle-size index. Aust J Agric Res 16:113–123

    Google Scholar 

  • Tranquilli G, Heaton J, Chicaiza O, Dubcovsky J (2002) Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci 42:1812–1817

    CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Giulani S, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    PubMed  CAS  Google Scholar 

  • Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51–60

    CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    PubMed  CAS  Google Scholar 

  • Urbano M, Margiotta B, Colaprico G, Lafiandra D (2002) Waxy protein in diploid, tetraploid and hexaploid wheat. Plant Breed 121:1–5

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    PubMed  CAS  Google Scholar 

  • Vawser MJ, Cornish GB (2004) Over-expression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum L.). Aust J Agric Res 55:577–588

    CAS  Google Scholar 

  • Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12:625–634

    Google Scholar 

  • Wildfeuer I, Acker L (1968) Uber die Bestimmung von Carotenoiden in Teigwaren und deren Rohstoffen. Mitt Geb Lebensm Hyg 59:392–400

    CAS  Google Scholar 

  • Witcombe JR, Hash CT (2000) Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic parent populations. Euphytica 112:175–186

    Google Scholar 

  • Wong JC, Lambert RJ, Wuertzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    PubMed  CAS  Google Scholar 

  • Yamamori M, Quynh NT (2000) Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet 100:32–38

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Kiribuchi-Otobe C (1998) Waxy protein alleles in common and emmer wheat germplasm. Misc Publ Natl Inst Agrobiol Resour 12:57–104

    Google Scholar 

  • Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates on altered starch with apparent high amylase. Theor Appl Genet 101:21–29

    CAS  Google Scholar 

  • Yamamori M, Kato M, Yui M, Kawasaki M (2006) Resistant starch and starch pasting properties of a starch synthase IIa-deficient wheat with apparent high amylose. Aust J Agric Res 57:531–535

    CAS  Google Scholar 

  • Yoo SH, Jane JL (2002) Structural and physical characteristics of waxy and other wheat starches. Carbohydr Polym 49:297–305

    CAS  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Google Scholar 

  • Zeng M, Morris CF, Batty IL, Wrigley CW (1997) Sources of variation for starch gelatinization, pasting and gelation properties in wheat. Cereal Chem 74:63–71

    CAS  Google Scholar 

  • Zhang W, Gianibelli MC, Rampling L, Gale KR (2004) Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theor Appl Genet 108:1409–1419

    PubMed  CAS  Google Scholar 

  • Zhang W, Lukaszewski A, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    PubMed  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Carrera A, Echenique V, Cervigni G, Helguera M, Dubcovsky J (2006) QTLs mapping for semolina and pasta colour in durum wheat. Plant & Animal Genome XIV conference, January 14–18, San Diego, CA, Poster P321, p 181

    Google Scholar 

  • Zhao XL, Xia XC, He ZH, Gale KR, Lei ZS, Appels R, Ma W (2006) Characterisation of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet 113:1247–1259

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lafiandra, D., Sanguineti, M.C., Maccaferri, M., Deambrogio, E. (2007). Molecular Markers and QTL Analysis for Grain Quality Improvement in Wheat. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_2

Download citation

Publish with us

Policies and ethics