Skip to main content

Genomics OF Root Nodulation In Soybean

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Soybean is a suitable crop material for studying root nodulation and full genome sequencing because of its economic value. This review introduces the “nodulation” phenomenon that occurs in legume root systems such as the soybean. In addition, the paper identifies and discusses nodulation mutants (e.g., non-nodulation, ineffective nodulation, and super-/hypernodulation) and the genetic loci that control nodulation. The advent of genomics, proteomics, metabolomics, etc., has greatly contributed in improving our understanding of the symbiotic interactions between legume plants and Rhizobia, particularly for the identification of nodulation-related genes. Furthermore, molecular gene identification should be combined with biochemical pathways for nodulation in order to better understand the symbiotic interactions between legume and Rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187

    Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2005) Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol Plant Microbe Interact 18:487–498

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, Oomen RJFJ, Visser RGF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Reporter 16:157–173

    Article  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, Tuinen DV, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related protein form Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electophoresis 23:122–137

    Article  CAS  Google Scholar 

  • Bhuvaneswari TV, Bhagwat AA, Bauer WD (1981) Transient susceptibility of root cells in four common legumes to nodulation by Rhizobia. Plant Physiol 68:1144–1149

    PubMed  CAS  Google Scholar 

  • Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J (2003) The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol 131:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Caldwell BE (1966) Inheritance of a stain-specific ineffective nodulation in soybean. Crop Sci 6:427–428

    Article  Google Scholar 

  • Carroll BJ, Mathew A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff, PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, FL, pp 159–180

    Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985b) Isolation and properties of soybean [Glycine max (L.) Merr] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 82:4162–4166

    Article  CAS  Google Scholar 

  • Catoira R, Timmers AC, Maillet F, Galera C, Penmetsa RV, Cook D, Denarie J, Gough C (2001) The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128:1507–1518

    PubMed  CAS  Google Scholar 

  • Clark FE (1957) Nodulation responses of two near-isogenic lines of the soybean. Can J Microbiol 3:113–123

    CAS  Google Scholar 

  • Colebatch G, Kloska S, Trevaski B, Freund S, Altman T, Udvardi MK (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol Plant Microbe Interact 15:411–420

    Article  PubMed  CAS  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512

    Article  PubMed  Google Scholar 

  • Cren M, Kondorosi A, Kondorosi E (1995) NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol Microbiol 15:733–747

    Article  PubMed  CAS  Google Scholar 

  • Davis TM, Foster KW, Phillips DA (1985) Nodulation mutants in chickpea. Crop Sci 25:345–348

    Article  Google Scholar 

  • Davis JHC, Giller KE, Kipe-Nolt J, ad Awah M (1988) Non-nodulating mutants in common bean. Crop Sci 28:859–860

    Article  Google Scholar 

  • Delves AC, Mathews A, Day A, Carter AS, Carroll BJ, Gresshoff, PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    PubMed  CAS  Google Scholar 

  • Delves AC, Carroll BJ, Gresshoff, PM (1988) Genetic analysis and complementation studies in a number of mutant supernodulating soybean lines. J Genet 67:1–8

    Google Scholar 

  • Dénarié J, Debelle F, Prome J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • Devine TE, O’Neill JJ (1986) Registration of BARC-2 (Rj4) and Barc-3 (rj4) soybean germplasm. Crop Sci 26:1263–1264

    Article  Google Scholar 

  • Devine TE, O’Neill JJ (1993) Genetic independence of the nodulation-response gene loci-Rj1, Rj2, and Rj4-in soybean. J Hered 84:140–142

    Google Scholar 

  • El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Fedorova M, van de Mortel J, Matsumoto PA, Cho, J, Town, CD, VandenBosch, KA, Gantt, JS, Vance, CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537

    Article  PubMed  CAS  Google Scholar 

  • Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri, S (1998) nodD2 of Rhizobium sp. NGR234 involved in the repression of the nodABC operon. Mol Microbiol 27:11039–11050

    Article  Google Scholar 

  • Geurts R, Fedorova E, Bisseling, T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  PubMed  CAS  Google Scholar 

  • Goormachtig S, Valerio-Lepiniex, M, Szczyglowski, K, Van Montagu M, Holsters M, de Bruijin FJ (1995) Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol Plant Microbe Interact 8:816–824

    PubMed  CAS  Google Scholar 

  • Gremaud MF, Harper JE (1989) Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol 89:169–173

    PubMed  CAS  Google Scholar 

  • Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201–205

    Article  PubMed  Google Scholar 

  • Gresshoff PM, Delves AC (1986) Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. Plant Gene Res 3:159–206

    Google Scholar 

  • Gresshoff PM, Olsson JE, Day DA, Schuller KA, Mathews A, Delves AC, KrotzKy A, Price GD, Carroll BJ (1987) Plant host genetics of nodulation in soybean. In: Verma DPS, Brisson N (eds) Molecular genetics of plant-microbe interactions. M. Nijhoff Publisher, Dordrecht, The Netherlands, pp 885–890

    Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  PubMed  CAS  Google Scholar 

  • Israel DW, Mathis JN, Barbour WM, Elkan GH (1986) Symbiotic effectiveness and host-strain interactions of Rhizobium fredii USDA 191 on different soybean cultivars. Appl Environ Microbiol 51:898–903

    PubMed  CAS  Google Scholar 

  • Jacobsen E, Feenstra WJ (1984) A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett 33:337–344

    Article  CAS  Google Scholar 

  • Jorrín JV, Rubiales D, Dumas-Gaudot E, Recorbet G, Maldonado A, Castillejo MA, Curto M (2006) Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica 147:37–47

    Article  CAS  Google Scholar 

  • Kim MY, Ha B-G, Jun T-H, Hwang E-Y, Van K, Kuk YI, Lee S-H (2004) Single nucleotide polymorphism discovery and linkage mapping of lipoxgenase-2 gene (Lx2) in soybean. Euphytica 135:169–177

    Article  CAS  Google Scholar 

  • Kim MY, Van K, Lestari P, Moon J-K, Lee S-H (2005) SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor Appl Genet 110:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  PubMed  CAS  Google Scholar 

  • Kneen BE, LaRue TA (1984) Nodulation resistant mutant of Pisum sativum (L.). J Hered 75:238–240

    Google Scholar 

  • Kneen BE, LaRue TA (1988) Induced symbiosis mutant pea (Pisum sativum) and sweetclover (Mililotus alba annua). Plant Sci 58:177–182

    Article  Google Scholar 

  • Knight CD, Rossen L, Robertson JG, Wells B, Downie JA (1986) Nodulation inhibition of Rhizobium leguminosarum multicopy nodABC genes and analysis of early stages of plant infection. J Bacteriol 166:552–558

    PubMed  CAS  Google Scholar 

  • Kolchinsky A, Landau-Ellis D, Gresshoff PM (1997) Map order and linkage distance of molecular markers close to the supernodulation (nts-1) locus of soybean. Mol Genet Genomics 254:29–36

    Article  CAS  Google Scholar 

  • Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffeman B, Schell J, Kondorosi A (1989) Positive and negative regulation of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340

    PubMed  CAS  Google Scholar 

  • Kosslak RM, Booklanf R, Barkei J, Paaren H, Appelbaum ER (1987) Induction of B. japonicum common nod genes by flavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428–7432

    Article  PubMed  CAS  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:264–274

    Article  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubet G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijin F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation in mediated by a receptor-like kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and micro-arrays to explore root endosymbioses in the model legume Medicago trauncatula. J Biotechnol 108:95–113

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18

    Article  PubMed  CAS  Google Scholar 

  • Landau-Ellis D, Angemuller S, Shoemaker RC, Gresshoff PM (1991) The genetic locus controlling supernodulation in soybean (Glycine max L.) co-segregates tightly with a cloned molecular marker. Mol Genet Genomics 228:221–226

    CAS  Google Scholar 

  • Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Lee S-H (1998) Introduction, development, and characterization of supernodulating soybean mutant – nitrate inhibition of nodulation and nitrogen fixation in supernodulating soybean mutant. Korean J Crop Sci 43:23–27

    Google Scholar 

  • Lee SH, Ashley DA, Boerma HR (1991) Regulation of nodule development in supernodulating mutants and wild-type soybean. Crop Sci 31:688–693

    Article  Google Scholar 

  • Lee HS, Chae YA, Park EH, Kim YW, Yun KI, Lee SH (1997) Introduction, development, and characterization of supernodulating soybean mutant – mutagenesis of soybean and selection of supernodulating soybean mutant. Korean J Crop Sci 42:247–253

    Google Scholar 

  • Lee H, Hur C-G, Oh CJ, Kim HB, Park S-Y, An CS (2004) Analysis of the root nodule-enhanced transcriptome in soybean. Mol Cells 18:53–62

    PubMed  Google Scholar 

  • Lestari P, Van K, Kim MY, Lee S-H (2005) Symbiotic effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant SS2-2. Korean J Crop Sci 50:125–130

    Google Scholar 

  • Lestari P, Van K, Kim MY, Hwang CH, Lee S-H (2006a) Differentially expressed genes related to symbiotic association in a supernodulating soybean mutant and its wild type by cDNA-AFLP. Mol Plant Pathol 7:235–247

    Article  CAS  Google Scholar 

  • Lestari P, Van K, Kim MY, Lee B-W, Lee S-H (2006b) Newly featured infection events in a supernodulating soybean mutant SS2-2 by Bradyrhizobium japonicum. Can J Microbiol 52:328–335

    Article  CAS  Google Scholar 

  • Lie TA (1974) Environmental effects on nodulation and symbiotic nitrogen fixation. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland Publishing Company, Amsterdam, pp 555–582

    Google Scholar 

  • Lievens S, Goormachtig S, Holsters M (2001) A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 29:3459–3468

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Stacey G (2001) Feedback regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 41:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    Article  PubMed  CAS  Google Scholar 

  • Lohnes DG, Wagner RE, Bernard RL (1993) Soybean genes Rj2, Rmd, and Rps2 in linkage group 19. J Hered 84:109–111

    CAS  Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214

    Article  PubMed  CAS  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Long SR (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  PubMed  CAS  Google Scholar 

  • Maguire TL, Grimmond S, Forrest A, Iturbe-Ormaetxe I, Meksem K, Gresshoff PM (2002) Tissue-specific gene expression monitored by cDNA microarray analysis of soybean (Glycine max). J Plant Physiol 159:1361–1374

    Article  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel gene induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djordjevic MA, Rolfe BG (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Imin N, Chen H, Djordjevic MA, Weinman JJ, Natera SH, Morris AC, Kerim T, Paul S, Menzel C, Weiller GF, Rolfe BG (2002) Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics 2:1288–1303

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryotic to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Mathews A, Carroll BJ, Gresshoff PM (1987) Characterization of non-nodulation mutants of soybean (Glycine max [L.] Merril): Bradyrhizobium effects and absence of root hair curling. J Plant Physiol 131:349–361

    Google Scholar 

  • Matthews BF, Devine TE, Weisemann JM, Beard HS, Lewers KS, MacDonald MH, Park Y-B, Maiti R, Lin J-J, Kuo J, Pedroni MJ, Cregan PB, Saunders JA (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci 41:516–521

    Article  CAS  Google Scholar 

  • Men AE, Laniya TS, Iturbe-Dramaetxe I, Gresshoff I, Jiang Q, Carroll BJ, Gresshoff PM (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in Linkage group H. Genome Lett 3:147–155

    Article  CAS  Google Scholar 

  • Mitra RM, Long SR (2004) Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiol 134:595–604

    Article  PubMed  CAS  Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod-factor-induced transcriptional changes associated with the legume-Rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    Article  PubMed  CAS  Google Scholar 

  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interaction between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22: 586–598

    Article  PubMed  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    Article  PubMed  CAS  Google Scholar 

  • Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed protein as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13:995–1009

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu, GJ, Kouchi H, Imaizumi-Anraku, H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa G (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED (2001) Dissecting symbiosis: development in Nod factor signal transduction. Ann Bot 87:709–718

    Article  CAS  Google Scholar 

  • Olsson JE, Nakao P, Bohlool B, Gresshoff PM (1989) Lack of systemic suppression of nodulation in split root systems of supernodulating soybean mutants. Plant Physiol 73:286–290

    Google Scholar 

  • Park SJ, Buttery BR (1988) Nodulation mutants of white bean (Phaseolus vulgaris L.) induced by ethyl-methane sulphonate. Can J Plant Sci 68:199–202

    CAS  Google Scholar 

  • Patner S, Thompson R, de Bruxelles G, Laver D, Trevaskis B, Udvardi M (2000) Identification with proteomics of novel proteins associated with the peribacteriod membrane of soybean root nodules. Mol Plant Microbe Interact 13:325–333

    Article  Google Scholar 

  • Pierce M, Bauer WD (1983) A rapid regulatory response governing nodulation in soybean. Plant Physiol 73:286–290

    PubMed  CAS  Google Scholar 

  • Pracht JE, Nickell CD, Harper JE (1993) Genetic analysis of a hypernodulating mutant of soybean. Soybean Genet Newsl 20:107–111

    Google Scholar 

  • Riely BK, Ané J-M, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413

    Article  PubMed  CAS  Google Scholar 

  • Rolfe BG, Mathesius U, Djordjevic M, Weinman J, Hocart C, Weiller G, Bauer WD (2003) Proteomic analysis of legume–microbe interactions. Comp Funct Genomics 4:225–228

    Article  CAS  PubMed  Google Scholar 

  • Saalbach G, Erik P, Wienkoop S (2002) Characterization by proteomics of peribacteriod space and peribacteriod membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics 2:325–337

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132

    Article  PubMed  CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougarrd J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol 119:951–959

    Article  PubMed  CAS  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57

    Article  PubMed  CAS  Google Scholar 

  • Searle IR, Men AM, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Caroll BJ, Gresshoff PM (2003) Long-distance signaling for nodulation control in legumes requires a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Simoes-Araujo JL, Rodrigues RL, de A Gerhardt LB, Mondego JM, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M (2002) Identification of differentially expressed gene by cDNA-AFLP technique during heat stress in cowpea nodules. FEBS Lett 515:44–50

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Libault M, Brenchenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121

    Article  PubMed  CAS  Google Scholar 

  • Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140:671–680

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder I, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase requires for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Sutton SD (1983) Nodule development and senescence. In: Broughton WJ (ed) Nitrogen fixation, Vol. 3. Legumes, Clarendon Press, Oxford, pp 144–209

    Google Scholar 

  • Tanner JW, Anderson IC (1963) Investigations on non-nodulating and nodulating soybean strains. Can J Plant Sci 43:542–545

    Article  Google Scholar 

  • Tesfaye M, Samac DA, Vance CP (2006) Insights into symbiotic nitrogen fixation in Medicago truncatula. Mol Plant Microbe Interact 19:330–341

    Article  PubMed  CAS  Google Scholar 

  • Town CD (2006) Annotating the genome of Medicago truncatula. Curr Opin Plant Biol 9:122–127

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Colebatch G, Desbrosses G, Wandrey M, Wienkoop S, Saalbach G, Udvardi M (2002) Differentiation of plant cells during symbiotic nitrogen fixation. Compar Funct Genomics 3:151–157

    Article  CAS  Google Scholar 

  • Van K, Kim K-S, Ha B-K, Jun T-H, Jang H-J, Kim MY, Lee S-H (2005) Molecular marker characterization of a supernodulating soybean mutant, SS2-2. Korean J Breeding 37:35–42

    Google Scholar 

  • Vance CP, Egli MN, Griffith SM, Miller SS (1988) Plant regulated aspects of nodulation and N fixation. Plant, Cell Environ 11:413–427

    Article  Google Scholar 

  • Vest G (1970) Rj – a gene conditioning ineffective nodulation in soybean. Crop Sci 10:34–35

    Article  Google Scholar 

  • Vest G, Caldwell BE (1972) Rj4-a gene conditioning ineffective nodulation in soybean. Crop Sci 12:692–693

    Article  Google Scholar 

  • Vuong TD, Harper JE (2000) Inheritance and allelism analysis of hypernodulating genes in the NOD3-7 and NOD2-4 soybean mutants. Crop Sci 40:700–703

    Article  Google Scholar 

  • Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Brayrhizobium japonicum. Mol Plant Microbe Interact 18:458–467

    Article  PubMed  CAS  Google Scholar 

  • William LF, Lynch DL (1954) Inheritance of a non-nodulating character in the soybean. Agron J 46:28–29

    Article  Google Scholar 

  • Winzer T, Bairl A, Linder M, Linder D, Werner D, Müller P (1999) A novel 53–kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Brayrhizobium japonicum. Mol Plant Microbe Interact 12:218–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Van, K., Kim, M.Y., Lee, SH. (2007). Genomics OF Root Nodulation In Soybean. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_16

Download citation

Publish with us

Policies and ethics