Skip to main content

Genomics Approaches To Soybean Improvement

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Soybean, Glycine max (L.) Merr., has become the major source of edible vegetable oils and high protein feeds for livestocks in the world. A native of Eastern Asia, soybean was introduced into the USA and South America where it has become the most economically important agricultural crop and export commodity. In recent years, as demand for soybean increased due to the values of seed oil and protein, as well as industrial and nutriceutical uses, it has received more attention by scientists aiming to the development and employment of genomic technology for soybean improvement. Several DNA marker systems, such as restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP), were integrated into the soybean genetic linkage map, which has been successfully utilized for mapping quantitative trait loci (QTL) linked to desirable traits and marker-assisted breeding of disease resistance and seed composition. The availability of a large number of expressed sequence tags (EST) and BAC sequences facilitated the discovery of new SNP and SSR markers in soybean toward the construction of high resolution genetic maps. Integrated genetic and physical maps will provide an invaluable resource for gene identification and positional cloning of important quantitative trait loci in soybean. Functional genomics has emerged as a new and rapidly evolved discipline to identify and understand gene functions via an integrated approach which includes transcriptomics, proteomics, metabolomics, translational genomics, and bioinformatics. The completion of whole soybean genome sequencing is anticipated in a few years. The availability of the soybean genome sequences in combination with the integrated genetic and physical maps will be invaluable resources providing soybean researchers powerful and efficient genomic tools to identify and characterize genes or QTLs for agronomic traits of soybean. As a result, it facilitates marker-assisted breeding and soybean improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphism of s sequence repeat DNA in soybean. Genetics 132:1131–1139

    PubMed  CAS  Google Scholar 

  • Anand SC, Rao-Arelli AP (1989) Genetic analyses of soybean genotypes resistance to soybean cyst nematode race 5. Crop Sci 29:1181–1184

    Google Scholar 

  • Anderson TR, Buzzell RI (1992) Inheritance and linkage of the Rps7 gene for resistance to Phytophthora rot of soybean. Plant Dis 76:958–959

    Google Scholar 

  • Apuya NR, Frazier BL, Keim P, Roth EJ, Lark KG (1988) Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theor Appl Genet 75:889–901

    CAS  Google Scholar 

  • Arelli PR, Sleper DA, Yue P, Wilcox JA (2000) Soybean reaction to races 1 and 2 of Heterodera glycines. Crop Sci 40:824–826

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–219

    CAS  Google Scholar 

  • Bhatnagar S, King CA, Purcell L, Ray JD (2005) Identification and mapping of quantitative trait loci associated with crop responses to water-deficit stress in soybean [Glycine max (L.) Merr.]. The ASA-CSSA-SSSA International Annual Meeting (Abstract), November 6–10, p 9

    Google Scholar 

  • Bhattacharyya M, Gao H (2006) Cloning and characterization of Rps1-k interactors. (Abstract) The 11th Biennial Conference on Molecular and Cellular Biology of the Soybean, August 5–8, Lincoln, NE

    Google Scholar 

  • Bhattacharyya MK, Gonzales RA, Kraft M, Buzzell RI (1997) A copia-like retrotransposon Tgm r closely linked to the Rps1-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol Biol 34:255–264

    PubMed  CAS  Google Scholar 

  • Bhattacharyya MK, Narayanan NN, Gao H, Santra DK, Salimath SS, Kasuga T, Liu Y, Espinosa B, Ellison L, Marek L, Shoemaker R, Gijzen M, Buzzell RI (2005) Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean. Theor Appl Genet 111:75–86

    PubMed  CAS  Google Scholar 

  • Birt DF, Hendrick S, Alekel DL, Anthony M (2004) Soybean and the prevention of chronic human disease. In: Boerma HR, Specht, JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 1047–1117

    Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL, p 209

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Boutin S, Ansari H, Concibido V, Denny R, Orf J, Young N (1992) RFLP analysis of cyst nematode resistance in soybean. Soybean Genet Newsl 19:123–127

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiologists, pp 1158–1249

    Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple sequence repeat in the tomato genome. Mol Gen Genet 250:39–49

    PubMed  CAS  Google Scholar 

  • Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37:370–378

    Google Scholar 

  • Burnham KD, Dorrance AE, Francis DM, Fioritto RJ, Martin SK St. (2003) Rps8, a new locus in soybean for resistance to Phytophthora sojae. Crop Sci 43:101–105

    CAS  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1992) Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol Gen Genet 235:157–165

    PubMed  CAS  Google Scholar 

  • Caldwell BE, Brim CA, Ross JP (1960) Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron J 52:635–636

    Google Scholar 

  • Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, Palmer L, Katari M, Young ND, Stacey G (2003) Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 270:347–361

    PubMed  CAS  Google Scholar 

  • Chalhoub BA, Thibault S, Laucou V, Rameau C, Hofte H, Cousin R (1997) Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. BioTechniques 22:216–220

    PubMed  CAS  Google Scholar 

  • Chang SJC, Doubler TW, Kilo VY, AbuThredeih J, Prabhu R, Freire V, Suttner R, Klein J, Schmidt ME, Gibson PT, Lightfoot DA (1997) Association of loci underlying field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN) race 3. Crop Sci 37:965–971

    CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) Theor Appl Genet 100:713–722

    CAS  Google Scholar 

  • Chung J, Cregan PB, Shoemaker RC, Specht JE, Lee DJ, Babka HL, Graef GL, Staswick PE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067

    CAS  Google Scholar 

  • Collins FS, Brooks LD, Charkravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229–1231

    PubMed  CAS  Google Scholar 

  • Concibido VC, Denny RL, Boutin SR, Hautea R, Orf JH, Young ND (1994) DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci 34:240–246

    CAS  Google Scholar 

  • Concibido VC, Young ND, Lange DA, Denny RL, Orf JH (1996) RFLP mapping and marker–assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci 36:1643–1650

    CAS  Google Scholar 

  • Concibido VC, Lange D, Denny RL, Orf J, Young N (1997) Genome mapping on soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Sci 37:258–264

    CAS  Google Scholar 

  • Cregan PB, Bhagwat AA, Akkaya MS, Rongwen J (1994) Microsatellite fingerprinting and mapping of soybean. Methods Cell Mol Biol 5:49–61

    CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999a) An integrated genetic linkage map of the soybean. Crop Sci 39: 1464–1490

    CAS  Google Scholar 

  • Cregan, PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999b) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    CAS  Google Scholar 

  • Cregan PB, Choi IY, Hyten DL, Song QJ, Matukumalli LK, Yoon MS, Yi SI, Reiter RS, Lee MS, Chase K, Lark KG, Shoemaker RC, Specht JE (2006) A SNP-based soybean genome map and applications in soybean breeding and genetics. (Abstract) The 11th Biennial Conference on Molecular and Cellular Biology of the Soybean, August 5–8, Lincoln, NE

    Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    PubMed  CAS  Google Scholar 

  • Demirbas A, Rector BG, Lohnes DG, Fioritto RJ, Graef GL, Cregan PB, Shoemaker RC (2001) Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance. Crop Sci 41:1220–1227

    CAS  Google Scholar 

  • Diers BW, Shoemaker RC (1992) Restriction fragment length polymorphism analysis of soybean fatty acid content. J Am Oil Chem Soc 69:1242–1244

    CAS  Google Scholar 

  • Diers BW, Keim P, Fehr WR, Shoemaker RC (1992a) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612

    Google Scholar 

  • Diers BW, Mansur L, Imsande J, Shoemaker (1992b) Mapping Phytophthora resistance loci in soybean with restriction fragment length markers. Crop Sci 32:377–383

    CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P (2002) Isolation of EST-derived mircosatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    PubMed  CAS  Google Scholar 

  • Ferreira RA, Foutz AB, Keim P (2000) Soybean genetic map of RAPD markers assigned to an existing scaffold RFLP map. J Hered 91:392–396

    PubMed  CAS  Google Scholar 

  • Gardner ME, Hymowitz T, Xu SJ, Hartman GL (2001) Physical map location of the Rps1-k allele in soybean. Crop Sci 41:1435–1438

    CAS  Google Scholar 

  • Gordon SG, Steven KM, Dorrance AE (2006) Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci 46:168–173

    CAS  Google Scholar 

  • Grau CR, Dorrance AE, Bond J, Russin J (2004) Fungal diseases. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 679–763

    Google Scholar 

  • Gu Z, Hiller L, Kwok PY (1998) Single nucleotide polymorphism hunting in cyberspace. Hum Mutat 12:221–225

    PubMed  CAS  Google Scholar 

  • Guo B, Sleper DA, Nguyen HT, Arelli PR, Shannon JG (2006) Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci 46:224–233

    CAS  Google Scholar 

  • Hancock JA, Hancock FG, Caviness CE, Riggs RD (1987) Genetics of resistance in soybean to “Race X” of soybean cyst nematode. Crop Sci 27:704–707

    Google Scholar 

  • Hans CS, Jackson S (2006) A cytogenetic approach to assign linkage groups to chromosomes. (Abstract) The 11th Biennial Conference on Molecular and Cellular Biology of the Soybean, August 5–8, Lincoln, NE

    Google Scholar 

  • Hartwig EE (1985) Breeding productive soybean with resistance to soybean cyst nematode. In: Shibles RA (ed) World Soybean Research Conference III. Westview Press, Boulder, CO, pp 394–399

    Google Scholar 

  • Hauge BM, Wang ML, Parsons JD, Parnell LD (2001) Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. US Pat Appl Publ No. 20030005491

    Google Scholar 

  • Heer JA, Knap HT, Mahalingam R, Shipe ER, Arelli PR, Matthews BF (1998) Molecular markers for resistance to Heterodera glycines in advanced soybean germplasm. Mol Breed 4:359–367

    CAS  Google Scholar 

  • Hermann FJ (1962) A revision of the genus Glycine and its immediate allies. USDA Tech Bull 1268, USDA, Washington DC

    Google Scholar 

  • Hurburgh CR Jr, Brumm TJ, Guinn JM, Hartwig RA (1990) Protein and oil patterns in US and world soybean markets. J Am Oil Chem Soc 67:966–973

    Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetics. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 97–136

    Google Scholar 

  • Hymowitz T, Singh RJ (1987) Taxonomy and speciation. In: Wilcox JR (ed) Soybeans: improvement, production, and uses. Agron. Monogr, 2nd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 23–45

    Google Scholar 

  • Hymowitz T, Singh RJ, Kollipara KP (1998) The genomes of the glycine. Plant Breed Rev 16:289–317

    CAS  Google Scholar 

  • Hyten DL, Cregan PB (2006) Saturation of the rhg1 genomic region with SNP markers to determine linkage drag in resistant soybean cultivars and to demonstrate association analysis in soybean. In: Abstracts of plant & animal genome XIV conference, Jan 14–18, San Diego, CA, p 205

    Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561

    PubMed  CAS  Google Scholar 

  • Jeong SC, Maroof MAS (2004) Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breed 123:305–310

    CAS  Google Scholar 

  • Joseph B, Specht J, Shoemaker RC (2004) Cloning the gene(s) underlying a major protein QTL on soybean linkage group-I. In: Soy2004 10th Biennial conference of the cellular and molecular biology of the soybean, Columbia, MO, p 73

    Google Scholar 

  • Kabelka EA, Carlson SR, Diers BW (2005) Localization of two loci that confer resistance to soybean cyst nematode from Glycine soja PI 468916. Crop Sci 45:2473–2481

    CAS  Google Scholar 

  • Kahl G, Mast A, Tooke N, Shen R, van de Boom D (2005) Single nucleotide polymorphisms: Detection techniques and their potential for genotyping and genome mapping. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH, Verlag GmbH & Co., KGaA, pp 75–107

    Google Scholar 

  • Kanazin V, Talbert H, See D, DeCamp P, Nevo E, Blake T (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol 48:529–537

    PubMed  CAS  Google Scholar 

  • Kao WY, Tsai TT, Tsai HC, Shih CN (2006) Response of three Glycine species to salt stress. Environ Expt Bot 56:120–125

    CAS  Google Scholar 

  • Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA (2004) Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol 1:52–60

    Google Scholar 

  • Kasuga T, Salimath SS, Shi JR, Gijzen M, Buzzell RI, Bhattacharyya MK (1997) High resolution genetic and physical mapping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean. MPMI 10:1035–1044

    CAS  Google Scholar 

  • Kawabe A, Yamane K, Miyashita NT (2000) DNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana. Genetics 156:1339–1347

    PubMed  CAS  Google Scholar 

  • Keim P, Shoemaker RC, Palmer RG (1989) Restriction fragment length polymorphism diversity in soybean. Theor Appl Genet 77:786–792

    Google Scholar 

  • Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742

    PubMed  CAS  Google Scholar 

  • Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, Ferreira A, Webb DM (1997) A high-density soybean genetic map based on AFLP markers. Crop Sci 37:537–543

    CAS  Google Scholar 

  • Kim MY, Ha BK, Jun TH, Hwang EY, Van K, Kuk YI, Lee SH (2004) Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean. Euphytica 135:169–177

    CAS  Google Scholar 

  • Kim HK, Kang ST, Cho JH, Choung MG, Suh DY (2005a) Quantitative trait loci associated with oligosaccharide and sucrose contents in soybean (Glycine max L.). J Plant Biol 48:106–112

    CAS  Google Scholar 

  • Kim MY, Van K, Lestari P, Moon JK, Lee SH (2005b) SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor Appl Genet 110:1003–1010

    CAS  Google Scholar 

  • Kuittinen H, Aguade M (2000) Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics 155:863–872

    PubMed  CAS  Google Scholar 

  • Kwok PY, Deng Q, Zakeri H, Nickerson DA (1996) Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31:123–126

    PubMed  CAS  Google Scholar 

  • Lackey J (1980) Chromosomes numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. Am J Bot 67:595–602

    Google Scholar 

  • Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    PubMed  CAS  Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 35:265–344

    Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Carter TE, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean protein and oil content across populations and locations. Theor Appl Genet 93:646–657

    Google Scholar 

  • Lee GJ, Carter TE Jr, Li Z, Gibbs MO, Boerma HR, Villagarcia MR, Zhou X (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109: 1610–1619

    PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002a) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    CAS  Google Scholar 

  • Li Z, Wilson RF, Rayford WE, Boerma HR (2002b) Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci 42:373–378

    CAS  Google Scholar 

  • Lightfoot D, Meksem K (2002) Isolated polynucleotides and polypeptides relating to loci underlying resistance to soybean cyst nematode and soybean sudden death syndrome and methods employing same. US Pat Appl Publ No. 2002144310

    Google Scholar 

  • Lindbad-Toh K, Winchester E, Daly MJ, Wang DC, Hirschhorn JN et al (2000) Large-scale discovery and genotyping of single nucleotide polymorphisms in the mouse. Nat Genet 24:381–385

    Google Scholar 

  • Linnaeus C (1737) Hortus cliffortianus, historiae naturalis classica. In: Cramer J, Swann HK (eds) Vol. 63 Reprint 1968. Stechert-Hafner Service Agency, NY, p 499

    Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  CAS  Google Scholar 

  • Lohnes DG, Schmitthenner AF (1997) Position of the Phytophthora gene Rps7 on the soybean molecular map. Crop Sci 37:555–556

    CAS  Google Scholar 

  • Lu H, Redus MA, Coburn JR, Rutger JN, McCouch SR, Tai TH (2005) Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Sci 45:66–76

    CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    PubMed  CAS  Google Scholar 

  • Luo Q, Yu B, Liu Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012

    PubMed  CAS  Google Scholar 

  • Lusas EW (2004) Soybean processing and utilization. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 949–1036

    Google Scholar 

  • Maguire TL, Grimmond S, Forrest A, Iturbe-Ormaetxe I, Meksem K, Gresshoff P (2002) Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarray analysis. J Plant Physiol 159:1361–1374

    Google Scholar 

  • Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86: 907–913

    CAS  Google Scholar 

  • Matson AL, Williams LF (1965) Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci 5:477

    Google Scholar 

  • Maughan PJ, Saghi Maroof MA, Buss GR (1995) Microsatellite and amplified sequence length polymorphism in cultivated and wild soybean. Genome 38:715–723

    PubMed  CAS  Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol Breed 6:105–111

    CAS  Google Scholar 

  • McCarthy JJ, Hilfiker R (2000) The use of single nucleotide polymorphism maps in pharmacogenetics. Nat Biotechnol 18:505–508

    PubMed  CAS  Google Scholar 

  • Meksem K, Pantazopoulos P, Njiti VN, Hyten LD, Arelli PR, Lightfoot DA (2001) ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:71–717

    Google Scholar 

  • Merrill ED (1917) An interpretation of Rumphius’s Herbarium Amboinense. Bureau of Printing, Manila, Philippines

    Google Scholar 

  • Mian MAR, Mailey MA, Ashley DA, Wells R, Carter TE, Parrot WA, Boerma HR (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36:1252–1257

    CAS  Google Scholar 

  • Mian MAR, Ashley DA, Boerma HR (1998) An additional QTL for water use efficiency in soybean. Crop Sci 38:390–393

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of marker linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  CAS  Google Scholar 

  • Monna L, Ohta R, Masuda H, Koike A, Minobe Y (2006) Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff). DNA Res 13:43–51

    PubMed  CAS  Google Scholar 

  • Monteros MJ, Burton JW, Boerma HR (2004) SSR analysis and confirmation of oleic acid QTL in N00-3350. In: Soy2004 the 10th biennial conference of the cellular and molecular biology of the soybean, Columbia, MO, p 58

    Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplification microsatellites as markers in plant genetics. Plant J 3:175–182

    PubMed  CAS  Google Scholar 

  • Morgante M, Rafalski JA, Biddle P, Tingey S, Olivieri AM (1994) Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome 37:763–769

    PubMed  CAS  Google Scholar 

  • Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana [Online]. BMC Plant Biol. Available at http://www.biomedcentral.com/1471–2229/5/15 (Verified August 30, 2006)

    Google Scholar 

  • Muehlbauer GJ, Staswick PE, Specht JE, Graef GL, Shoemaker RC, Keim P (1991) RFLP mapping using near-isogenic lines in the soybean [Glycine max (L.) Merr.]. Theor Appl Genet 81:189–198

    Google Scholar 

  • Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechnologies 30:348–357

    CAS  Google Scholar 

  • Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H, Wing RA, Messing J, Soderlund C (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38

    PubMed  CAS  Google Scholar 

  • Nguyen HT, Wu X (2005) Molecular marker systems for genetic mapping. In: Meksem K, Kahl G (eds.) The handbook of plant genome mapping. Wiley-VCH, Verlag GmbH & Co., KGaA, pp 23–50

    Google Scholar 

  • Nichols DM, Glover KD, Carlson SR, Specht JE, Diers BW (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46:834–839

    Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress. Vol. 1: Abiotic factors. Wiley, New York, p 704

    Google Scholar 

  • Ohashi H, Tateishi Y, Huang TC, Chen TT (1984) Leguminosae in Taiwan. Sci Rep Tohoku University 4th Ser. (Biology) 38:315

    Google Scholar 

  • Olsen KM, Womace A, Garrett AR, Suddith JI, Purugganan MD (2002) Contrasting evolutionary forces in the Arabidopsis thaliana floral development pathway. Genetics 160:1641–1650

    PubMed  CAS  Google Scholar 

  • Oosterhuis DM, Scott HD, Hampton RE, Wullschleger SD (1990) Physiological response of two soybean [Glycine max, L. Merr.] cultivars to short-term flooding. Env Exp Bot 30:85–92

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology plants under stress: soil and biotic factors. Wiley, New York, p 696

    Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits. I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Google Scholar 

  • Orf JH, Diers BW, Boerma HR (2004) Genetic improvement: conventional and molecular strategies. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 417–480

    Google Scholar 

  • Pagel J, Walling JG, Young ND, Shoemaker RC, Jackson SA (2004) Segmental duplications within the Glycine max genome revealed by fluorescence in situ hybridization of bacterial artificial chromosomes. Genome 47:764–768

    PubMed  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil content, and seed size in soybean. Crop Sci 45:2015–2022

    CAS  Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Orf JH, Killam AS (2006) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet 112:546–53

    PubMed  CAS  Google Scholar 

  • Primomo VS, Poysa V, Ablett GR, Jackson CJ, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 45:2454–2464

    CAS  Google Scholar 

  • Purcell LC, Specht JE (2004) Physiological traits for ameliorating drought stress. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp 569–620

    Google Scholar 

  • Putnay SD, Herlihy WC, Schimmel P (1983) A new troponin T and cDNA clones for 13 different muscle proteins, found by shortgun sequencing. Nature (London) 302:718–721

    Google Scholar 

  • Qui BX, Arelli PR, Sleper DA (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ × ‘Essex’ population. Theor Appl Genet 98:356–364

    Google Scholar 

  • Rafalski A, Tingey S (1993) RFLP map of soybean (Glycine max). In: O’Brien SJ (ed) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, New York, pp 149–156

    Google Scholar 

  • Rao-Arelli, AP (1994) Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis 78:898–900

    Google Scholar 

  • Raper CD Jr, Kramer PJ (1987) Stress physiology. In: Wilcox JR (ed) Soybeans: improvement, production and uses. Agron Monogr, 2nd edn. No. 16, ASA, CSSA, and SSSA, Madison, WI, pp 589–642.

    Google Scholar 

  • Reyna N, Cornelious B, Shannon JG, Sneller CH (2003) Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci 43:2077–2082

    Google Scholar 

  • Rongwen J, Akkaya MS, Lavi U, Cregan PB (1995) The use of microsatellite DNA marker for soybean genotype identification. Theor Appl Genet 90:43–48

    CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    PubMed  CAS  Google Scholar 

  • Sanchez de la Hoz MP, Davila JA, Loarce Y, Ferrer E (1996) Simple sequence repeat primers used in polymerase chain reaction amplification to study genetic diversity in barley. Genome 39:112–117

    PubMed  CAS  Google Scholar 

  • Scallon BJ, Dickinson CD, Nielsen NC (1987) Characterization of a null-allele for the Gy4 glycinin gene from soybean. Mol Gen Genet 208:107–113

    CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  • Schmitthenner AF (1985) Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69:362–368

    Google Scholar 

  • Schmitthenner AF, Hobe M, Bhat RG (1994) Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis 78:269–276

    Google Scholar 

  • Scott HD, DeAngulo J, Daniels MB, Wood LS (1989) Flood duration effects on soybean growth and yield. Agron J 81:631–636

    Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein content in soybean. Crop Sci 40:1438–1444

    CAS  Google Scholar 

  • Seki M, Satuo M, Sakurai T, Akiyama K, Lida K, Ishida J, Nakajima M, Enju A, Narusaka M, Miki Fujita M, Oono Y, Ayako Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2005) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55:213–223

    Google Scholar 

  • Shalon D, Smith S, Brown P (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645

    PubMed  CAS  Google Scholar 

  • Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    CAS  Google Scholar 

  • Shoemaker RC, Olson TC (1993) Molecular linkage map of soybean (Glycine max L. Merr.). In: O’Brien SJ (ed) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Press, New York, pp 6131–6138

    Google Scholar 

  • Shoemaker RC, Hatfield PM, Palmer RG, Atherly AG (1986) Chloroplast DNA variation in the genus Glycine subgenus Soja. J Hered 87:308–313

    Google Scholar 

  • Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338

    PubMed  CAS  Google Scholar 

  • Shoemaker RC, Cregan PB, Vodkin LO (2004) Soybean genomics. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 235–263

    Google Scholar 

  • Shultz JL, Kurunam D, Shopinski K, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Yesudas CR, Kassem MA, Wu C, Zhang HB, Town CD, Meksem K, Lightfoot DA (2006a) The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34:D758–65

    Google Scholar 

  • Shultz JL, Yesudas CR, Yaegashi S, Afzal J, Kazi S, Lightfoot DA (2006b) Three minimum tile paths from bacterial artificial chromosome libraries of the soybean (Glycine max cv. ‘Forrest’): Tools for structural and functional genomics [Online]. Plant Methods Available at http://www.plantmethods.com/content/2/1/9 (Verified August 30, 2006)

    Google Scholar 

  • Singh RJ, Hymowitz T (1989) The genomic relationship among Glycine soja Sieb and Zucc, G max (L.) Merr and ‘G. gracillis’ Skvortz. Plant Breed 103:171–173

    Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    CAS  Google Scholar 

  • Skvortzow BV (1927) The soybean-wild and cultivated in Eastern Asia. Proc Manchurian Res Soc Pub Ser. A Nat History Sec 22:1–8

    Google Scholar 

  • Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. CABIOS 13:523–535

    PubMed  CAS  Google Scholar 

  • Soderlund C, Engler F, Hatfield J, Blundy S, Chen M, Yeisoo Y, Wing R (2001) Mapping sequence to rice FPC. In: Computational biology and genome Informatics, World Scientific Publishing

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    PubMed  CAS  Google Scholar 

  • Specht JE, Germann M, Markwell JP, Lark KG, Orf JH, Macrander M, Chase K, Chung J, Graef GL (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Google Scholar 

  • Stombaugh SK, Orf JH, Jung HG, Chase K, Lark KG, Somers DA (2004) Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci 44:2101–2106

    CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays spp mays L.). Proc Natl Acad Sci USA 98:9161–9166

    PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Tooley PW, Grau CR (1984) The relationship between rate-reducing resistance to Phytophthora megasperma f. sp. glycinea and yield of soybean. Phytopathology 74:1209–1216

    Google Scholar 

  • Tooley PW, Grau CR (1986) Microplot comparison of rate-reducing and race-specific resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology 76:554–557

    Google Scholar 

  • Van K, Hwang EY, Kim MY, Park HJ, Lee SH, Cregan PB (2005) Discovery of SNPs in soybean genotypes frequently used as the parents of mapping populations in the United States and Korea. J Hered 96:529–535

    PubMed  CAS  Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Google Scholar 

  • VanToai TT, Beuerlein JE, Schmitthenner AF, Martin SK St (1994) Genetic variability for flooding tolerance in soybeans. Crop Sci 34:1112–1115

    Google Scholar 

  • VanToai TT, Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Google Scholar 

  • Vodkin LO, Khanna A, Shealy R, Clough SJ, Gonzalez DO, Philip R, Zabala G, Thibaud-Nissen F, Sidarous M, Stromvik M et al (2004) Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genomics 5:73

    PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Rijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) A new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Vroh Bi I, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Palacco M, Soderlund C, Wing R, Fang Z, Coe EH Jr (2006) Single nucleotide polymorphisms and insertion–deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21

    Google Scholar 

  • Walker AK, Schmitthenner AF (1984) Heritability of tolerance to Phytophthora rot in soybean. Crop Sci 24:490–491

    Google Scholar 

  • Walker DR, Scaboo AM, Pantalone VR, Wilcox JR, Boerma HR (2006) Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 soybean. Crop Sci 46:390–397

    CAS  Google Scholar 

  • Webb DM, Baltazar BM, Rao-Arelli PA, Schupp J, Clayton K, Keim P, Beavis WD (1995) Genetic mapping of soybean cyst nematode race-3 resistance loci in soybean PI437.654. Theor Appl Genet 91:574–581

    CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    PubMed  CAS  Google Scholar 

  • Weng C, Yu K, Anderson TR, Poysa V (2001) Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J Hered 92:442–446

    Google Scholar 

  • Williams JKG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. Agron Monogr, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, WI, pp 621–677

    Google Scholar 

  • Winstead NN, Skotland CB, Sasser JN (1955) Soybean cyst nematode in North Carolina. Plant Dis Rep 39:9–11

    Google Scholar 

  • Wrather JA, Koenning SR, Anderson TR (2003) Effect of diseases on soybean yields in the United States and Ontario (1999–2003) [Online]. Plant Heath Progress. doi:10.1094/PHP-2003-0325-01-RV. Available at http//www.plantmanagementnetwork.org/ (Verified August 28, 2006)

    Google Scholar 

  • Wu XL, He CY, Chen SY, Zhuang BC, Wang KJ, Wang XC (2001) Phylogenetic analysis of interspecies in the genus Glycine through SSR markers (in Chinese). Act Genet Sin 28:359–366

    CAS  Google Scholar 

  • Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang HB (2004a) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res 14:319–326

    CAS  Google Scholar 

  • Wu X, Lee GJ, Huang S, Wan J, Stacey G, Nguyen H (2004b) Six dimensional BAC DNA pools – a new resource for soybean genome mapping. In: Soy2004 the 10th biennial conference of the cellular and molecular biology of the soybean, Columbia, MO, p 57

    Google Scholar 

  • Wu X, Blake S, Pyatek K, Sleper D, Shannon G, Nguyen H (2005) SNP marker development for rhg1 and Rhg4 conferring SCN resistance in soybean. Life Sciences Week, University of Missouri-Columbia (poster)

    Google Scholar 

  • Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000) Primary trisomics in soybean: origin, identification, breeding behavior, and use in linkage mapping. Crop Sci 40:1543–1551

    Google Scholar 

  • Xue ZT, Xu MI, Shen W, Zhuang NL, Hu WM, Shen SC (1992) Characterization of a Gy4 glycine gene from soybean Glycine max cv. Forrest. Plant Mol Biol 18:897–908

    PubMed  CAS  Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–55

    PubMed  CAS  Google Scholar 

  • Yates JL, Harris DK, Boerma HR (2004) Marker-assisted selection around a major QTL on LG-I increases seed protein content in backcross-derived lines of soybean. In: Soy2004 the 10th biennial conference of the cellular and molecular biology of the soybean, Columbia, MO, p 67

    Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–792

    CAS  Google Scholar 

  • Yue P, Arelli PR, Sleper DA (2001a) Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet 102:921–928

    CAS  Google Scholar 

  • Yue P, Sleper DA, Arelli PR (2001b) Mapping resistance to multiple races of Heterodera glycines in soybean PI 89772. Crop Sci 41:1589–1595

    CAS  Google Scholar 

  • Zaitsev VS, Naroditsky BS, Khavkin EE (2001) Homologs of the genes for receptor kinase proteins conferring plant resistance to pathogens. Comparative analysis of the homologs of the rice gene Xa21 in Triticeae Institute of Agriculture Biotechnology, 42 Timiryazevskaya ul., Moscow 127550, Russia (http://www.ncbi.nlm.nih.gov)

    Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean [Glycine max (L.) Merr.] genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    PubMed  CAS  Google Scholar 

  • Zhao Q, Zhang Y, Cheng Z, Chen M, Wang S et al (2002) A fine physical map of the rice chromosome 4. Genome Res 12:817–823

    PubMed  CAS  Google Scholar 

  • Zhu T, Shi L, Doyle JJ, Keim P (1995) A single nucleotide locus phylogeny of soybean based on DNA sequence. Theor Appl Genet 90:991–999

    CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genet 163:1123–1134

    CAS  Google Scholar 

  • Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    PubMed  CAS  Google Scholar 

  • Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific down regulation of photosynthesis. Mol Plant Microbe Interact 18:1161–1174

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vuong, T.D., Wu, X., Pathan, M.S., Valliyodan, B., Nguyen, H.T. (2007). Genomics Approaches To Soybean Improvement. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_11

Download citation

Publish with us

Policies and ethics