Skip to main content
  • 114 Accesses

Abstract

Composite materials consisting of organic polymer and inorganic nanoparticles are expected to present superior thermal and mechanical properties i.e. high modulus and strength and good performance at elevated temperatures [1, 2]. Research on the mechanical properties of stiff particulate-filled polymeric materials show that their mechanical behavior is a result of a complex combination of the properties of the constituent phases [3]. The principal relevant parameters are the properties of the matrix (resin system), the particle size and shape, and particle content [4, 5]. Particles of micron level dimensions produce an increase in toughness; however, they also increase the viscosity of the epoxy resin thus reducing the ease of processing. Addition of nanoparticles in epoxy resins has been shown to further increase the toughness of the nanocomposite without significantly increasing the viscosity of the epoxy matrix [69]. Another important parameter that can significantly alter the properties of the nanocomposites is the filler aspect ratio. Because of their high surface area to volume ratio, nanofillers have been found to have a high reinforcing efficiency even at very low concentrations [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ragosta, G., Abbatea, M., Mustoa, P., Scarinzia, G., Mascia, L, Polymer, vol. 46, 10506, 2005.

    Article  Google Scholar 

  2. Miyagawa, H., Foo, K.H, Daniel, I.M., Drzal, L.T., J Appl Polym Sci, vol. 96, 281–287, 2005

    Article  Google Scholar 

  3. Harismendy, I., et al, Polymer, vol. 38, 5573, 1997.

    Article  Google Scholar 

  4. Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T. Polymer, vol. 32(12), 2221–2229, 1991.

    Article  Google Scholar 

  5. Koh, S., Kim, J., Mai, Y., Polymer, vol. 34, 3446, 1993.

    Article  Google Scholar 

  6. Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T., J Appl Polym Sci, vol. 45, 1281, 1992.

    Article  Google Scholar 

  7. Yasmin, A., Luo, J.J., Abot, J.L., Daniel, I.M., Comp Sci Tech, vol. 66, 2415–2422, 2006.

    Article  Google Scholar 

  8. Kinloch, A.J., Taylor A.C., Lee J.H., Sprenger, S., Eger C, Egan D., J Adhes, vol. 79(8-9), 867–873, 2003.

    Article  Google Scholar 

  9. Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Eger, C, Sprenger S., Egan, D., J Mater Sci, vol. 40(18), 5083–5086, 2005.

    Article  Google Scholar 

  10. Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T. Polymer, vol. 32(16) 2976–2979, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Konsta-Gdoutosa, M.S., Danielb, I.M., Metaxaa, Z., Chob, J. (2007). Thermo-Mechanical Characterization of Epoxy/Silica Nanocomposites. In: Gdoutos, E.E. (eds) Experimental Analysis of Nano and Engineering Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6239-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6239-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6238-4

  • Online ISBN: 978-1-4020-6239-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics