Skip to main content

The Interrelationship Between The Spatial Distribution Of Microorganisms And Vegetation In Forest Soils

  • Chapter
The Spatial Distribution of Microbes in the Environment

Recent advances in techniques for investigating soil organisms and evaluating spatial structure have improved our understanding of the spatial dynamics of the soil microbial community. Identifying the scale at which microbial community function and interact in forest soils is essential to designing sampling schemes that will allow us to adequately evaluate the complex relationships between the microbial community and vegetation. Geostatistical tools useful for evaluating these relationships include tools that allow researchers to identify the extent to which the data are spatially structured and allow for the creation of maps for linking organisms and ecosystem characteristics that might exist at different scales. Research on the microbial community in forest soils using these and other scaling techniques has demonstrated that microbial communities both are patterned by and influence the spatial dynamics of the vegetation in their environment at scales that range from centimeter to stand size. Microbes are key to nutrient cycling and microbial community dynamics respond to the vegetation in their immediate vicinity in ways that reflect both the specific identity of the microbe and plant and the spatially patterning of the processes. The mechanisms that underlie these tight relationships of pattern and function reflect the dependence of autotrophs on decomposers and mutualists for nutrient acquisition and the long evolutionary history of these organisms. Improved understanding of the complex spatial relationships between the microbial community and vegetation will improve our ability to provide management guidelines that will allow managers to protect our forest resources. Keywords: forest soils, bacteria, fungi, microorganism, ecosystem function, community structure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M. F., C. Crisafulli, C. F. Friese, and S. L. Jeakins, 1992, Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990 - interactions of rodents and mycorrhizal fungi, Mycol. Res. 96:447-453.

    Article  Google Scholar 

  • Bauhus, J., D. Pare, and L. Cote, 1998, Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest, Soil Biol. Biochem. 30: 1077-1089.

    Article  CAS  Google Scholar 

  • Belotte, D., J. B. Curien, R. C. Maclean, and G. Bell, 2003, An experimental test of local adaptation in soil bacteria, Evolution 57:27-36.

    PubMed  Google Scholar 

  • Bever, J. D., 1994, Feedback between plants and their soil communities in an old field com-munity, Ecology 75:1965-1977.

    Article  Google Scholar 

  • Bever, J. D., 2003, Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests, New Phytol. 157:465-473.

    Article  Google Scholar 

  • Bever, J. D., and E. L. Simms, 2000, Evolution of nitrogen fixation in spatially structured populations of Rhizobium, Heredity 85:366-372.

    Article  PubMed  CAS  Google Scholar 

  • Binkley, D., 1995, The influence of tree species on forest soils: processes and patterns, in: Proceedings of the Trees and Soils Workshop, 28 February-2 March, Canterbury, N. Z., D. J. Mead, and I. S. Cornforth, eds., Agronomy Society of New Zealand, Canterbury, New Zealand, Special Publication 10, pp. 1-34.

    Google Scholar 

  • Binkley, D., and D. Valentine, 1991, Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment, For. Ecol. Manage. 40:13-25.

    Article  Google Scholar 

  • Boerner, R. E. J., and J. G. Kooser, 1989, Leaf litter redistribution among forest patches within an Allegheny Plateau watershed, Landscape Ecol. 2:81-92.

    Article  Google Scholar 

  • Boerner, R. E. J., and S. D. Koslowsky, 1989, Microscale variations in nitrogen mineralization and nitrification in a beech-maple forest, Soil Biol. Biochem. 21:795-801.

    Article  Google Scholar 

  • Boerner, R. E. J., B. G. DeMars, and P. N. Leicht, 1996, Spatial patterns of mycorrhizal infective-ness of soils long a successional chronosequence, Mycorrhiza 6:79-90.

    Article  Google Scholar 

  • Boerner, R. E. J., J. A. Brinkman, and A. Smith, 2005, Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest, Soil Biol. Biochem. 37:1419-1426.

    Article  CAS  Google Scholar 

  • Brandtberg, P. O., J. Bengtsson, and H. Lundkvist, 2004, Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands, For. Ecol. Manage. 198:193-208.

    Article  Google Scholar 

  • Brown, M. E., 1974, Seed and root bacterization, Annu. Rev. Phytopathol. 12:181-197.

    Article  CAS  Google Scholar 

  • Brundrett, M. C., 2002, Coevolution of roots and mycorrhizas of land plants, New Phytol. 154:275-304.

    Article  Google Scholar 

  • Chapela, I. H., L. J. Osher, T. R. Horton, and M. R. Henn, 2001, Ectomycorrhizal fungi intro-duced with exotic pine plantations induce soil carbon depletion, Soil Biol. Biochem. 33: 1733-1740.

    Article  CAS  Google Scholar 

  • Chapin, F. S., 2003, Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change, Ann. Bot. 91:455-463.

    Article  PubMed  Google Scholar 

  • Clements, F. E., 1936, Nature and structure of the climax, J. Ecol. 24:252-284.

    Article  Google Scholar 

  • Coleman, D. C., D. A. Crossley, and P. F. Hendrix, 2004, Fundamentals of Soil Ecology. Elsevier Academic Press, New York, NY.

    Google Scholar 

  • Cooper, R., 1959, Bacterial fertilizers in the Soviet Union, Soil Fertil. 22:327-333.

    Google Scholar 

  • Crozier, C. R., and R. E. J. Boerner, 1986, Stemflow induced forest floor heterogeneity in a mixed mesophytic forest, Bartonia 52:1-8.

    Google Scholar 

  • Decker, K. L. M., R. E. J. Boerner, and S. J. Morris, 1999, Scale-dependent patterns of soil enzyme activity in a forested landscape, Can. J. For. Res. 29:232-241.

    Article  CAS  Google Scholar 

  • Denison R .F, C. Bledsoe, M. Kahn, F. O Gara, E. L. Simms, and L. S. Thomashow, 2003, Cooperation in the rhizosphere and the “free rider” problem, Ecology 84:838-845.

    Article  Google Scholar 

  • Dijkstra, F. A., 2003, Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US, For. Ecol. Manage. 175:185-194.

    Article  Google Scholar 

  • Dijkstra, F. A., C. Geibe, S. Holmstrom, U. S. Lundstrom, and N. van Breeman, 2001, The effect of organic acids on base cation leaching from the forest floor under six North American tree species, Eur. J. Soil Sci. 52:205-214.

    Article  CAS  Google Scholar 

  • Dixon, R. K., S. Brown, R. A. Houghton, M. A. Solomon, M. C. Trexler, and J. Wisniewski, 1994, Carbon pools and flux of global forest ecosystems, Science 263:185-190.

    Article  PubMed  CAS  Google Scholar 

  • Domenech, J., B. Ramos-Solano, A. Probanza, J. A. Lucas-García, J. J. Colón, and F. J. Gutiérrez-Mañero, 2004, Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection, For. Ecol. Manage. 194:293-303.

    Article  Google Scholar 

  • Eviner, V. T., 2004, Plant traits that influence ecosystem processes vary independently among species, Ecology 85:2215-2229.

    Article  Google Scholar 

  • Finzi, A. C., N. van Breeman, and C. D. Canham, 1998a, Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen, Ecol. Appl. 8:440-446.

    Google Scholar 

  • Finzi, A. C., C. D. Canham, and N. van Breeman, 1998b, Canopy tree-soil interactions within temperate forests: species effects on soil pH and cations, Ecol. Appl. 8:447-454.

    Google Scholar 

  • Fitter, A. H., 1977, Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses, New Phytol. 79:119-125.

    Article  CAS  Google Scholar 

  • Franklin, R. B., and A. L. Mills, 2003, Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field, FEMS Microbiol. Ecol. 44: 335-346.

    Article  PubMed  CAS  Google Scholar 

  • Gallardo, A., J. J. Rodriguez-Saucedo, F. Covelo, and R. Fernandez-Ales, 2000, Soil nitrogen heterogeneity in a Dehesa ecosystem, Plant Soil 222:71-82.

    Article  CAS  Google Scholar 

  • Geary, R. C., 1954, The contiguity ratio and statistical mapping, Inc. Ststcian. 5:115-145.

    Google Scholar 

  • Gesper, P. L., and N. Holowaychuk, 1971, Some affects of stem flow from forest canopy trees on chemical properties of soils, Ecology 52:691-702.

    Article  Google Scholar 

  • Gleason, H. A., 1926, The individualistic concept of the plant association, Bull. Torrey Bot. Club. 53:7-26.

    Article  Google Scholar 

  • Goovaerts, P., 1998, Geostatistical tools for characterizing the spatial variability of micro-biological and physico-chemical soil properties, Biol. Fertil. Soils. 27:315-334.

    Article  CAS  Google Scholar 

  • Grayston, S. J., and C. D. Campbell, 1996, Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix eurolepis) and Sitka spruce (Picea stichensis), Tree Physiol. 16:1031-1038.

    PubMed  Google Scholar 

  • Grayston, S. J., and C. E. Prescott, 2005, Microbial communities in forest floors under four tree species in coastal British Columbia, Soil Biol. Biochem. 37:1157-1167.

    Article  CAS  Google Scholar 

  • Grayston, S. J., D. Vaughan, and D. Jones, 1996, Rhizosphere carbon flow in trees, in compare-son with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability, Appl. Soil Ecol. 5:29-56.

    Article  Google Scholar 

  • Hansen, R. A., 1999, Red oak litter promotes a microarthropod functional group that accele-rates its decomposition, Plant Soil 209:37-45.

    Article  CAS  Google Scholar 

  • Hendricks, J. J., J. D. Aber, K. J. Nadelhoffer, and R. D. Hallett, 2000, Nitrogen controls on fine root substrate quality in temperate forest ecosystems, Ecosystems 3:57-69.

    Article  CAS  Google Scholar 

  • Hobbie, S. E., 1992, Effects of plant species on nutrient cycling, Trends Ecol. Evol. 7:336-339.

    Article  Google Scholar 

  • Jackson, R. B., and M. M. Caldwell, 1993, The scale of nutrient heterogeneity around indivi-dual plants and its quantification with geostatistics, Ecology 74:612-614.

    Article  Google Scholar 

  • Jackson, R. B., J. H. Manwaring, and M. M. Caldwell, 1990, Rapid physiological adjustment of roots to localized soil enrichment, Nature 344:58-60.

    Article  PubMed  CAS  Google Scholar 

  • Klironomos, J. N., 2002, Feedback with soil biota contributes to plant rarity and invasiveness in communities, Nature 417:67-70.

    Article  PubMed  CAS  Google Scholar 

  • Klironomos, J. N., 2003, Variation in plant response to native and exotic arbuscular mycorrhizal fungi, Ecology 84:2292-2301.

    Article  Google Scholar 

  • Kravchenko, A. N., C. W. Boast, and D. G. Bullock, 1999, Multifractal analysis of soil spatial variability, Agron. J. 91:1033-1041.

    Article  Google Scholar 

  • Lawton J. H., D. E. Bignell, G. F. Bloemers, P. Eggleton, and M. E. Hodda, 1996, Carbon flux and diversity of nematodes and termites in Cameroon forest soils, Biodivers. Conserv. 5:261-273.

    Article  Google Scholar 

  • Leckie, S. E., C. E. Prescott, and S. J. Grayston, 2004, Forest floor microbial community res-ponse to tree species and fertilization of regenerating coniferous forests, Can. J. For. Res. 34:1426-1435.

    Article  Google Scholar 

  • Legendre, P., and M. J. Fortin, 1989, Spatial pattern and ecological analysis, Vegetatio, 80: 107-138.

    Article  Google Scholar 

  • Lovett, G. M., and M. J. Mitchell, 2004, Sugar maple and nitrogen cycling in the forests of eastern North America, Front. Ecol. Env. 2:81-88.

    Article  Google Scholar 

  • Lovelock C. E., and R. Miller, 2002, Heterogeneity in inoculum potential and effectiveness of arbuscular mycorrhizal fungi, Ecology, 83:823-832.

    Article  Google Scholar 

  • Lucas García, J. A., J. Domenech, C. Santamaría, M. Camacho, A. Daza, and F. J. Gutierrez Mañero, 2004, Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere, Environ. Exp. Bot. 52:239-251.

    Article  Google Scholar 

  • Lussenhop, J., and D. T. Wicklow, 1984, Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil, Soil Biol. Biochem. 16:601-604.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1977, Fractals: Form, Chance and Dimension. Freeman Press, San Francisco, CA.

    Google Scholar 

  • Matherton, G., 1963, Principles of geostatistics, Econ. Geol. 58:1246-1266.

    Article  Google Scholar 

  • Mitchell, M. J., 1978, Vertical and horizontal distributions of oribatid mites (Acari: Crypto-stigmata) in an aspen woodland soil, Ecology 59:516-525.

    Article  Google Scholar 

  • Moran, P. A. P., 1948, The interpretation of statistical maps, J. Roy. Statist. Soc. Ser. B 10: 243-251.

    Google Scholar 

  • Moran, P. A. P., 1950, Notes on continuous stochastic phenomena, Biometrika 37:17-23.

    PubMed  CAS  Google Scholar 

  • Morris, S. J., 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns, Soil Biol. Biochem. 31:1375-1386.

    Article  CAS  Google Scholar 

  • Morris, S. J., and R. E. J. Boerner, 1999, Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: scale dependency and landscape patterns, Soil Biol. Biochem. 31:887-902.

    Article  CAS  Google Scholar 

  • Nambiar, E. K. S., 1987, Do nutrients retranslocate from fine roots? Can. J. For. Res. 17:913-918.

    Article  Google Scholar 

  • Nunan, N., K. Wu, I. M. Young, J. W. Crawford, and K. Ritz, 2002, In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil, Microb. Ecol. 44: 296-305.

    Article  PubMed  CAS  Google Scholar 

  • Packer, A., and K. Clay, 2000, Soil pathogens and spatial patterns of seedling mortality in a temperate tree, Nature 404:278-281.

    Article  PubMed  CAS  Google Scholar 

  • Pennanen, T., J. Liski, E. Bååth, V. Kitunin, J. Uotila, C. J. Westman, and J. Fritze, 1999, Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage, Microb. Ecol. 38:168-179.

    Article  PubMed  Google Scholar 

  • Peterjohn, W. T., C. J. Foster, M. J. Christ, and M. B. Adams, 1999, Patterns of nitrogen availability within a forested watershed exhibiting symptoms of nitrogen saturation, For. Ecol. Manage. 119:247-257.

    Article  Google Scholar 

  • Priha, O., and A. Smolander, 1997, Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites, Biol. Fertil. Soils 24:45-51.

    Article  CAS  Google Scholar 

  • Priha, O., and A. Smolander, 1999, Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites, Soil Biol. Biochem. 31:965-977.

    Article  CAS  Google Scholar 

  • Priha, O., S. J. Grayston, R. Hiukka, T. Pennanen, and A. Smolander, 2001, Microbial com-munity structure and characteristics of the organic matter in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites, Biol. Fertil. Soils 33:17-24.

    Article  CAS  Google Scholar 

  • Priha, O., S. J. Grayston, T. Pennanen, and A. Smolander, 1999, Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil, FEMS Microbiol. Ecol. 30:187-199.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., and J. Wu, 1996, Effects of changing spatial scales on analysis of landscape patterns using spatial autocorrelation indices, Landscape Ecol. 11:39-49.

    Article  Google Scholar 

  • Reinhart, K. O., A. Packer, W. H. Van der Putten, and K. Clay, 2003, Plant-soil biota inter-actions and spatial distribution of black cherry in its native invasive ranges, Ecol. Lett. 6: 1046-1050.

    Article  Google Scholar 

  • Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz, 1992, Geostatistical tools for modeling and interpreting ecological spatial dependence, Ecol. Monogr. 62:277-314.

    Article  Google Scholar 

  • Saetre, P., P. O. Brandtberg, H. Lundkvist, and J. Bengtsson, 1999, Soil organisms and carbon, nitrogen and phosphorus mineralization in Norway spruce and mixed Norway spruce-Birch stands, Biol. Fertil. Soils 28:382-388.

    Article  Google Scholar 

  • Schippers, B., R. J. Scheffer, B. J. J. Lugtenberg, and P. J. Weisbeck, 1995, Biocoating of seeds with plant growth promoting rhizobacteria to improve plant establishment, Outlook Agric. 24:179-185.

    Google Scholar 

  • Stoyan, H., H. De-Polli, S. Bohm, G. P. Robertson, and E. A. Paul, 2000, Spatial hetero-geneity of soil respiration and related properties at the plant scale, Plant Soil 222:203-214.

    Article  CAS  Google Scholar 

  • Templer, P., S. Findlay, and G. Lovett, 2003, Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA, Soil Biol. Biochem. 35:607-613.

    Article  CAS  Google Scholar 

  • Templer, P. H., and T. E. Dawson, 2004, Nitrogen uptake by four tree species of the Catskill Mountains, New York: implications for forest N dynamics, Plant Soil 262:251-261.

    Article  CAS  Google Scholar 

  • Templer, P. H., G. M. Lovett, K. C. Weathers, S. E. Findlay, and T. E. Dawson, 2005, Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA, Ecosystems 8:1-16.

    Article  CAS  Google Scholar 

  • Turner, D. P., and E. H. Franz, 1985, The influence of western hemlock and western red cedar on microbial numbers, nitrogen mineralization, and nitrification, Plant Soil 88:259-267.

    Article  Google Scholar 

  • Van Der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I. R. Sanders, 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature 396:69-72.

    Article  CAS  Google Scholar 

  • Wall, D. H., and J. C. Moore, 1999, Interactions underground - soil biodiversity, mutualisms and ecosystem processes, Bioscience 49:109-117.

    Article  Google Scholar 

  • Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setäla, W. H. van der Putten, and D. H. Wall, 2004, Ecological linkages between aboveground and belowground biota, Science, 304:1629-1633.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, C. S. M., and M .A. Arthur, 2003, Spatial variability in soil nutrient availability in an oak-pine forest: potential effects of tree species, Can. J. For. Res. 33:2321-2330.

    Article  Google Scholar 

  • Wu, J., and D. E. Jelinski. 1995, Pattern and scale in ecology: the modifiable area unit problem, in: Lectures in Modern Ecology, B. Li, ed., Science Press, Beijing.

    Google Scholar 

  • Zinke, P. J., 1962, The pattern of influence of individual forest trees on soil properties, Ecology 43:130-133.

    Article  Google Scholar 

  • Zinke, P. J., and R. L. Crocker, 1962, The influence of giant Sequoia on soil properties, For. Sci. 8:2-11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Morris, S.J., Dress, W.J. (2007). The Interrelationship Between The Spatial Distribution Of Microorganisms And Vegetation In Forest Soils. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_9

Download citation

Publish with us

Policies and ethics