Skip to main content

Role of Calcium in the Pathogenesis of Alzheimer’s Disease and Transgenic Models

  • Chapter
Calcium Signalling and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the elderly that is characterized by memory loss. Neuropathologically, the AD brain is marked by an increased Aβ burden, hyperphosphorylated tau aggregates, synaptic loss, and inflammatory responses. Disturbances in calcium homeostasis are also one of the earliest molecular changes that occur in AD patients, alongside alterations in calcium-dependent enzymes in the post-mortem brain. The sum of these studies suggests that calcium dyshomeostasis is an integral part of the pathology, either influencing Aβ production, mediating its effects or both. Increasing evidence from in vitro studies demonstrates that the Aβ peptide could modulate a number of ion channels increasing calcium influx, including voltage-gated calcium and potassium channels, the NMDA receptor, the nicotinic receptor, as well as forming its own calcium-conducting pores. In vivo evidence has shown that Aβ impairs both LTP and cognition, whereas all of these ion channels cluster at the synapse and underlie synaptic transmission and hence cognition. Here we consider the evidence that Aβ causes cognitive deficits through altering calcium homeostasis at the synapse, thus impairing synaptic transmission and LTP. Furthermore, this disruption appears to occur without overt or extensive neuronal loss, as it is observed in transgenic mouse models of AD, but may contribute to the synaptic loss, which is an early event that correlates best with cognitive decline

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arispe, N., Rojas, E., and Pollard, H. B. (1993). Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, B. D., Denis, P., Haniu, M., Teplow, D. B., Kahn, S., Louis, J. C., Citron, M., and Vassar, R. (2000). A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s beta-secretase. J Biol Chem 275, 37712–37717.

    Article  PubMed  CAS  Google Scholar 

  • Benzing, W. C., Wujek, J. R., Ward, E. K., Shaffer, D., Ashe, K. H., Younkin, S. G., and Brunden, K. R. (1999). Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., and LaFerla, F. M. (2005). Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bobich, J. A., Zheng, Q., and Campbell, A. (2004). Incubation of nerve endings with a physiological concentration of Abeta1–42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. J Alzheimers Dis 6, 243–255.

    PubMed  CAS  Google Scholar 

  • Brown, S. T., Scragg, J. L., Boyle, J. P., Hudasek, K., Peers, C., and Fearon, I. M. (2005). Hypoxic augmentation of Ca2+ channel currents requires a functional electron transport chain. J Biol Chem 280, 21706–21712.

    Article  PubMed  CAS  Google Scholar 

  • Caccamo, A., Oddo, S., Billings, L. M., Green, K. N., Martinez-Coria, H., Fisher, A., and LaFerla, F. M. (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., Younkin, L., Good, M. A., Bliss, T. V., Hyman, B. T., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., and Fernandez, H. L. (2004). Stimulation of beta-amyloid precursor protein alpha-processing by phorbol ester involves calcium and calpain activation. Biochem Biophys Res Commun 316, 332–340.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q. S., Kagan, B. L., Hirakura, Y., and Xie, C. W. (2000). Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res 60, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., Schoepp, D. D., Paul, S. M., Mennerick, S., and Holtzman, D. M. (2005). Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Colvin, R. A., Bennett, J. W., Colvin, S. L., Allen, R. A., Martinez, J., and Miner, G. D. (1991). Na+/Ca2+ exchange activity is increased in Alzheimer’s disease brain tissues. Brain Res 543, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Coon, A. L., Wallace, D. R., Mactutus, C. F., and Booze, R. M. (1999). L-type calcium channels in the hippocampus and cerebellum of Alzheimer’s disease brain tissue. Neurobiol Aging 20, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., and Tsai, L. H. (2003). Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky, S. T., Scheff, S. W., and Styren, S. D. (1996). Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5, 417–421.

    Article  PubMed  CAS  Google Scholar 

  • Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280, 17294–17300.

    Article  PubMed  CAS  Google Scholar 

  • Ekinci, F. J., Malik, K. U., and Shea, T. B. (1999). Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta-amyloid-induced neurodegeneration. J Biol Chem 274, 30322–30327.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenholz, F., and Postina, R. (2006). Alpha-secretase activation–an approach to Alzheimer’s disease therapy. Neurodegener Dis 3, 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Garlind, A., Cowburn, R. F., Forsell, C., Ravid, R., Winblad, B., and Fowler, C. J. (1995). Diminished [3H]inositol(1,4,5)P3 but not [3H]inositol(1,3,4,5)P4 binding in Alzheimer’s disease brain. Brain Res 681, 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., Nielsen, P., Sherman, K. A., and Blass, J. P. (1987). Diminished mitogen-induced calcium uptake by lymphocytes from Alzheimer patients. Biol Psychiatry 22, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., Niidome, T., Akaike, A., Kihara, T., and Sugimoto, H. (2006). Amyloid beta-peptide preconditioning reduces glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor. Biochem Biophys Res Commun 351, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. N., and Peers, C. (2001). Amyloid beta peptides mediate hypoxic augmentation of Ca(2+) channels. J Neurochem 77, 953–956.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. N., and Peers, C. (2002). Divergent pathways account for two distinct effects of amyloid beta peptides on exocytosis and Ca(2+) currents: involvement of ROS and NF-kappaB. J Neurochem 81, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., Penney, J. B., D’Amato, C. J., and Young, A. B. (1987). Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J Neurochem 48, 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Grynspan, F., Griffin, W. R., Cataldo, A., Katayama, S., and Nixon, R. A. (1997). Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 763, 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Hedin, H. L., Eriksson, S., and Fowler, C. J. (2001). Human platelet calcium mobilisation in response to beta-amyloid (25–35): buffer dependency and unchanged response in Alzheimer’s disease. Neurochem Int 38, 1450–151.

    Google Scholar 

  • Hirashima, N., Etcheberrigaray, R., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Govoni, S., and Alkon, D. L. (1996). Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease. Neurobiol Aging 17, 549–555.

    Article  PubMed  CAS  Google Scholar 

  • Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., et al. (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. M., Toral-Barza, L., Thaler, H., Tofel-Grehl, B., and Gibson, G. E. (1991). Inositol phosphates and intracellular calcium after bradykinin stimulation in fibroblasts from young, normal aged and Alzheimer donors. Neurobiol Aging 12, 469–473.

    Article  PubMed  CAS  Google Scholar 

  • Ibarreta, D., Parrilla, R., and Ayuso, M. S. (1997). Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer disease. Alzheimer Dis Assoc Disord 11, 220–227.

    PubMed  CAS  Google Scholar 

  • Kawahara, M., and Kuroda, Y. (1997). [Molecular mechanism of neuronal death in Alzheimer’s disease: Ca(2+)-channel formation of beta amyloid protein molecules]. Tanpakushitsu Kakusan Koso 42, 2002–2010.

    PubMed  CAS  Google Scholar 

  • Kishimoto, A., Mikawa, K., Hashimoto, K., Yasuda, I., Tanaka, S., Tominaga, M., Kuroda, T., and Nishizuka, Y. (1989). Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264, 4088–4092.

    PubMed  CAS  Google Scholar 

  • LaFerla, F. M. (2002). Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3, 862–872.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. S., and Tsai, L. H. (2001). Cdk5 at the junction. Nat Neurosci 4, 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Leissring, M. A., Akbari, Y., Fanger, C. M., Cahalan, M. D., Mattson, M. P., and LaFerla, F. M. (2000). Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 149, 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., and Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21, 8370–8377.

    PubMed  CAS  Google Scholar 

  • Liu, F., Grundke-Iqbal, I., Iqbal, K., Oda, Y., Tomizawa, K., and Gong, C. X. (2005). Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280, 37755–37762.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kawai, H., and Berg, D. K. (2001). beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A 98, 4734–4739.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Peterson, D. A., and Schubert, D. (1998). Amyloid beta peptide alters intracellular vesicle trafficking and cholesterol homeostasis. Proc Natl Acad Sci U S A 95, 13266–13271.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., and Schubert, D. (1997). Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem 69, 2285–2293.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. G., and erson, E., Lynch, G. S., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima, T., and Nitta, A. (1994). Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, I., Kato, N., Kita, T., and Takechi, H. (2005). Mechanism of impairment of long-term potentiation by amyloid beta is independent of NMDA receptors or voltage-dependent calcium channels in hippocampal CA1 pyramidal neurons. Neurosci Lett 391, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H., and LaFerla, F. M. (2004). Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., and LaFerla, F. M. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24, 1063–1070.

    Article  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421.

    Article  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Tran, L., Lambert, M. P., Glabe, C. G., Klein, W. L., and LaFerla, F. M. (2006). Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281, 1599–1604.

    Article  PubMed  CAS  Google Scholar 

  • Palotas, A., Kalman, J., Laskay, G., Juhasz, A., Janka, Z., and Penke, B. (2001). Comparative studies on [Ca2+]i-level of fibroblasts from Alzheimer patients and control individuals. Neurochem Res 26, 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Peskind, E. R., Potkin, S. G., Pomara, N., Ott, B. R., Graham, S. M., Olin, J. T., and McDonald, S. (2006). Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 14, 704–715.

    Article  PubMed  Google Scholar 

  • Peterson, C., Gibson, G. E., and Blass, J. P. (1985). Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. N Engl J Med 312, 1063–1065.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C., and Goldman, J. E. (1986). Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci U S A 83, 2758–2762.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1986). Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci U S A 83, 7999–8001.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1988). Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytosolic free calcium. Neurobiol Aging 9, 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Petryniak, M. A., Wurtman, R. J., and Slack, B. E. (1996). Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism. Biochem J 320 ( Pt 3), 957–963.

    PubMed  CAS  Google Scholar 

  • Pettit, D. L., Shao, Z., and Yakel, J. L. (2001). beta-Amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21, RC120.

    PubMed  CAS  Google Scholar 

  • Pierrot, N., Ghisdal, P., Caumont, A. S., and Octave, J. N. (2004). Intraneuronal amyloid-beta1–42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem 88, 1140–1150.

    Article  PubMed  CAS  Google Scholar 

  • Pontremoli, S., Melloni, E., Michetti, M., Sparatore, B., Salamino, F., Sacco, O., and Horecker, B. L. (1987). Phosphorylation by protein kinase C of a 20-kDa cytoskeletal polypeptide enhances its susceptibility to digestion by calpain. Proc Natl Acad Sci U S A 84, 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Price, S. A., Held, B., and Pearson, H. A. (1998). Amyloid beta protein increases Ca2+ currents in rat cerebellar granule neurones. Neuroreport 9, 539–545.

    PubMed  CAS  Google Scholar 

  • Querfurth, H. W., Jiang, J., Geiger, J. D., and Selkoe, D. J. (1997). Caffeine stimulates amyloid beta-peptide release from beta-amyloid precursor protein-transfected HEK293 cells. J Neurochem 69, 1580–1591.

    Article  PubMed  CAS  Google Scholar 

  • Querfurth, H. W., and Selkoe, D. J. (1994). Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33, 4550–4561.

    Article  PubMed  CAS  Google Scholar 

  • Ramsden, M., Plant, L. D., Webster, N. J., Vaughan, P. F., Henderson, Z., and Pearson, H. A. (2001). Differential effects of unaggregated and aggregated amyloid beta protein (1–40) on K(+) channel currents in primary cultures of rat cerebellar granule and cortical neurones. J Neurochem 79, 699–712.

    Article  PubMed  CAS  Google Scholar 

  • Ripova, D., Platilova, V., Strunecka, A., Jirak, R., and Hoschl, C. (2004). Alterations in calcium homeostasis as biological marker for mild Alzheimer’s disease? Physiol Res 53, 449–452.

    PubMed  CAS  Google Scholar 

  • Ripovi, D., Platilova, V., Strunecka, A., Jirak, R., and Hoschl, C. (2000). Cytosolic calcium alterations in platelets of patients with early stages of Alzheimer’s disease. Neurobiol Aging 21, 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., Elce, J. S., Hamos, J. E., and Nixon, R. A. (1993). Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90, 2628–2632.

    Article  PubMed  CAS  Google Scholar 

  • Scragg, J. L., Fearon, I. M., Boyle, J. P., Ball, S. G., Varadi, G., and Peers, C. (2005). Alzheimer’s amyloid peptides mediate hypoxic up-regulation of L-type Ca2+ channels. Faseb J 19, 150–152.

    PubMed  CAS  Google Scholar 

  • Shi, J., Townsend, M., and Constantine-Paton, M. (2000). Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28, 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Shi, X. P., Chen, E., Yin, K. C., Na, S., Garsky, V. M., Lai, M. T., Li, Y. M., Platchek, M., Register, R. B., Sardana, M. K., et al. (2001). The pro domain of beta-secretase does not confer strict zymogen-like properties but does assist proper folding of the protease domain. J Biol Chem 276, 10366–10373.

    PubMed  CAS  Google Scholar 

  • Sinha, S., and Lieberburg, I. (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 96, 11049–11053.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I. F., Green, K. N., and LaFerla, F. M. (2005). Calcium dysregulation in Alzheimer’s disease: recent advances gained from genetically modified animals. Cell Calcium 38, 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K., and Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8, 1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Takenouchi, T., and Munekata, E. (1994). Inhibitory effects of beta-amyloid peptides on nicotine-induced Ca2+ influx in PC12h cells in culture. Neurosci Lett 173, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. C., Batten, T. F., and Peers, C. (1999). Hypoxic enhancement of quantal catecholamine secretion. Evidence for the involvement of amyloid beta-peptides. J Biol Chem 274, 31217–31222.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Toescu, E. C., Verkhratsky, A., and Landfield, P. W. (2004). Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27, 614–620.

    Article  PubMed  CAS  Google Scholar 

  • Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S. F., Hao, Y. H., Serneels, L., De Strooper, B., Yu, G., and Bezprozvanny, I. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126, 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., Shinohara, S., Yagami, T., Asakura, K., and Kawasaki, K. (1997). Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J Neurochem 68, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Ulas, J., and Cotman, C. W. (1997). Decreased expression of N-methyl-D-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience 79, 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B. S., Peterhoff, C., Cataldo, A., Rudnicki, A., Amin, N., et al. (2004). Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am J Pathol 165, 795–805.

    PubMed  CAS  Google Scholar 

  • Walsh, D. M., Townsend, M., Podlisny, M. B., Shankar, G. M., Fadeeva, J. V., El Agnaf, O., Hartley, D. M., and Selkoe, D. J. (2005). Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 25, 2455–2462.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Kuo, Y. P., George, A. A., Xu, L., Hu, J., and Lukas, R. J. (2004). beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J Biol Chem 279, 37842–37851.

    Article  PubMed  CAS  Google Scholar 

  • Yasar, S., Corrada, M., Brookmeyer, R., and Kawas, C. (2005). Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol Aging 26, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Ye, C., Walsh, D. M., Selkoe, D. J., and Hartley, D. M. (2004). Amyloid beta-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neurosci Lett 366, 320–325.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, A. S., Cheng, I., Chung, S., Grenfell, T. Z., Lee, H., Pack-Chung, E., Handler, M., Shen, J., Xia, W., Tesco, G., et al. (2000). Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. T., Kish, S. J., Li, P. P., and Warsh, J. J. (1988). Decreased brain [3H]inositol 1,4,5-trisphosphate binding in Alzheimer’s disease. Neurosci Lett 94, 198–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

GREEN, K., SMITH, I., LAFERLA, F. (2007). Role of Calcium in the Pathogenesis of Alzheimer’s Disease and Transgenic Models. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_19

Download citation

Publish with us

Policies and ethics