Skip to main content

Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Enhanced solar ultraviolet radiation (UVR) due to stratospheric ozone depletion is a major stress factor for many phototrophic organisms in aquatic and terrestrial ecosystems (Franklin and Forster, 1997). UVR includes the wavelengths below those visible to the human eye. According to the CIE (Commission Internationale de l’Eclairage), the spectral range is divided into three wavebands: 315–400 nm UVA, 280–315 nm UVB and 190–280 nm UVC. UVA is not attenuated by ozone, and hence its fluence rate will be unaffected by any ozone layer reduction reaching aquatic and terrestrial organisms. Increases in UVB have been particularly reported in Antarctica (McKenzie et al., 2003) and the adjacent geographic regions (southern parts of South America and Australia) (Buchdahl, 2002; Deschamps et al., 2004), as well as in more recent years in the Arctic region (Knudsen et al., 2005). UVB exposure is potentially harmful to all living organisms, but especially to photosynthetic organisms due to their requirement for light. UVB represents less than 1% of the total solar radiation reaching the earth’s surface, because it is absorbed partly by the ozone layer. It is particularly this waveband, which is influenced by changing stratospheric ozone concentrations caused by anthropogenic emissions of greenhouse gases, such as chlorinated fluorocarbons (Fraser et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikary, S.P. and Sahu, J.K. (2000). Survival strategies of cyanobacteria occurring as crust in the rice fields under drought conditions. Ind. J. Microbiol. 40: 53-56.

    Google Scholar 

  • Bebout, B.M. and Garcia-Pichel, F. (1995). UV-Binduced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61:4215-4222.

    CAS  PubMed  Google Scholar 

  • Böhm, G.A., Pfleiderer, W., Böger, P. and Scherer, S. (1995). Structure of a novel oligosaccharide mycosporine amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. biol. Chem. 270: 8536-8539.

    Article  PubMed  Google Scholar 

  • Brenowitz, S. and Castenholz, R.W. (1997). Long-term effects of UV and visible irradiance on natu-ral populations of scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiol. Ecol. 24: 343-352.

    Article  CAS  Google Scholar 

  • Büdel, B., Karsten, U. and Garcia-Pichel, F. (1997). Ultraviolet-absorbing scytonemin and mycosporine like amino acid derivatives inexposed rock inhabiting cyanobacterial lichens. Oecologia 112: 165-172.

    Article  Google Scholar 

  • Büdel, B. (1999). Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur. J. Phycol. 34: 361-370.

    Article  Google Scholar 

  • Buchdahl, J. (2002). Ozone depletion. Available at http://www.ace.mmu.ac.uk/Resources/Fact_Sheets/ Key_Stage_4/Ozone_Depletion/pdf/Ozone_Depletion. Accesed on 22 May 2007.

  • Burton, G.W. and Ingold, K.U. (1984). Carotene: an unusual type of lipid antioxidant. Science 224: 569-573.

    Article  CAS  PubMed  Google Scholar 

  • Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110.

    Article  CAS  PubMed  Google Scholar 

  • Cadoret, J.C., Rousseau, B., Perewoska, I., Sicora, C., Cheregi, O., Vass, I. and Houmard, J. (2005). Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobac-terium Synechocystis sp. PCC 6803. J. Biol. Chem. 280: 33935-33944.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, D., Eriksson, M.J., Öquist, G., Gustafsson, P. and Clarke, A.K. (1998). The cyanobac-terium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc. Natl. Acad. Sci. U.S.A. 95: 364-369.

    Article  CAS  PubMed  Google Scholar 

  • Canfield, D.E., Sorensen, K.B. and Oren, A. (2004). Biogeochemistry of a gypsum-encrusted micro-bial ecosystem. Geobiology 2: 133-150.

    Article  CAS  Google Scholar 

  • Castenholz, R.W. (1972). Low temperature acclimation and survival in thermophilic Oscillatoria tere-briformis. In: T.V. Desikachary (ed.) Taxonomy and Biology of Blue-Green Algae. University of Madras, India, pp. 406-418.

    Google Scholar 

  • Castenholz, R.W. (1997). Multiple strategies for UV tolerance in cyanobacteria. Spectrum 10: 10-16.

    Google Scholar 

  • Castenholz, R.W. and Garcia-Pichel, F. (2000). Cyanobacterial responses to UV-radiation, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Netherlands, pp. 591-611.

    Google Scholar 

  • Christensen, B.E., Kjosbakken, J. and Smidsrod, O. (1985). Partial chemical and physical characteri-zation of two extracellular polysaccharides produced by marine periphytic Pseudomonas sp. Strain NCMB 2021. Appl. Environ. Microbiol. 50: 837-845.

    CAS  PubMed  Google Scholar 

  • Cockell, C.S. and Knowland, J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. 74: 311-345.

    Article  CAS  PubMed  Google Scholar 

  • Deschamps, L., Roff, G., Fraser, P., Klekociuk, A. and Grainger, S. (2004). Ozone and UV September 2004. BMRC Res. Lett. 1: 1-4.

    Google Scholar 

  • Dillon, J.G., Tatsumi, C.M., Tandingan, P.G. and Castenholz, R.W. (2002). Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch. Microbiol. 177: 322-331.

    Article  CAS  PubMed  Google Scholar 

  • Donkor, V.A., Damian, H.A.K and Hader, D.P. (1993). Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol. Ecol. 12: 143-148.

    Article  Google Scholar 

  • Dunlap, W.C. and Shick, J.M. (1998). Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34: 418-430.

    Article  Google Scholar 

  • Dunlap, W.C. and Yamamoto, Y. (1995). Small-molecule antioxidants in marine organisms: antioxi-dant activity of mycosporine-glycine. Com. Biochem. Physiol. 112: 105-114.

    Article  Google Scholar 

  • Edge, R., Mc Garvey, D.J. and Truscott, T.G. (1997). The carotenoids as antioxidants: a review. J. Photochem. Photobiol. B: Biol. 41: 189-200.

    Article  CAS  Google Scholar 

  • Ehling-Schulz, M. and Scherer, S. (1999). UV protection in cyanobacteria. Eur. J. Phycol. 34: 329-338.

    Article  Google Scholar 

  • Ehling-Schulz, M., Bilger, W. and Scherer, S. (1997). UV-B induced synthesis of photoprotective pig-ments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940-1945.

    CAS  PubMed  Google Scholar 

  • Ehling-Schulz, M., Schulz, S., Wait, R., Görg, A., and Scherer, S. (2002). The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins. Mol. Microbiol. 46: 827-843.

    Article  CAS  PubMed  Google Scholar 

  • Favre-Bonvin, J., Bernillon, J., Salin, N. and Arpin, N. (1987). Biosynthesis of mycosporines: mycosporine glutaminol in Trichothecium roseum. Phytochemistry 26: 2509-2514.

    Article  CAS  Google Scholar 

  • Franklin, L.A. and Forster, R.M. (1997). The changing irradiance environment: consequences for marine macrophyte physiology. Eur. J. Phycol. 32: 207-232.

    Google Scholar 

  • Fraser, P.J., Bouma, W.J., Forgan, B.W., Lehman, P. and Roy, C.R. (1992). The 1992 Antarctic ozone hole. Clean Air 26: 132-133.

    Google Scholar 

  • Garcia-Pichel, F. and Belnap, J. (1996). Microenvironments and microscale productivity of cyanobac-terial desert crusts. J. Phycol. 32: 774-782.

    Article  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1991). Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 395-409.

    Article  CAS  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1993). Occurrence of UV-absorbing mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59: 163-169.

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1994). On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: L.J. Stal and P. Caumette (eds.) Microbial Mats, Structure, Development and Environmental significance, NATO ASI series, Springer-Verlag, Berlin, pp. 77-84.

    Google Scholar 

  • Garcia-Pichel, F., Mechling, M. and Castenholz, R.W. (1994). Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60: 1500-1511.

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W. (1992). Evidence for a UV-sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56: 17-23.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, T., Windhoevel, U., Boeger, P. and Sandmann, G. (1999). Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol. 120: 599-604.

    Article  Google Scholar 

  • He, Yu-Ying. and Häder, D.-P. (2002a). Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem. Photobiol. Sci. 1: 729-736.

    Article  CAS  PubMed  Google Scholar 

  • He, Yu-Ying. and Häder, D.-P. (2002b). UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol. B: Biol. 66: 115-124.

    Article  CAS  Google Scholar 

  • Helm, R.F., Hung, Z., Edward, D., Leeson, H., Peery, W. and Potts, M. (2000). Structural character-ization of the released polysaccharide of desiccation tolerant Nostoc commune DRH-1. J. Bacteriol. 184: 974-982.

    Article  Google Scholar 

  • Hill, D., Keenan, T., Helm, R., Potts, M., Crowe, L. and Crowe, J. (1997). Extracellular polysaccha-ride of Nostoc commune (cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J. Appl. Phycol. 9: 237-248.

    Article  CAS  Google Scholar 

  • Hughes, K.A. and Lawley, B. (2003). A novel Antarctic microbial endolithic community within gyp-sum crusts. Environ. Microbiol. 5: 555-565.

    Article  PubMed  Google Scholar 

  • Huovinen, P., Gomez, I. and Lovengreen, C. (2006). A five-year study of solar ultraviolet radiation in southern Chile (39 degrees S): potential impact on physiology of coastal marine algae? Photochem. Photobiol. 82: 515-522.

    Article  CAS  PubMed  Google Scholar 

  • Javor, B.J. and Castenholz, R.W. (1984). Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico. In: Y. Cohen, H. Hulvorson and R.W. Castenholz (eds.) Microbial Mats: Stomatolites. Alan R. Liss. Inc, New York, pp. 149-170.

    Google Scholar 

  • Jiang, H. and Qiu, B. (2005). Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged UV-B exposure. J. Phycol. 41: 983-992.

    Article  Google Scholar 

  • Karsten, U. (2002). Effects of salinity and ultraviolet radiation on the concentration of mycosporine-like amino acids in various isolates of the benthic cyanobacterium Microcoleus chthonoplastes. Phycol. Res. 50: 129-134.

    Article  CAS  Google Scholar 

  • Karsten, U. and Garcia-Pichel, F. (1996). Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (cyanobacteria): a chemosystematic study. Syst. Appl. Microbiol. 19: 285-294.

    Google Scholar 

  • Karsten, U., Maier, J. and Garcia-Pichel, F. (1998). Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aqua. Micro. Ecol. 16: 37-44.

    Article  Google Scholar 

  • Kerfeld, A.C. (2004). Water-soluble carotenoid proteins of cyanobacteria. Arch. Biochem. Biophys. 430: 2-9.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, B.M., Jonch-Sorensen, H., Eriksen, P., Johansen, B.J. and Bodeker, G.E. (2005). UV radia-tion below an Arctic vortex with severe ozone depletion. Atmos. Chem. Phys. Discuss. 5: 4679-4700.

    Google Scholar 

  • Kovacik, L. (2000). Cyanobacteria and algae as agents of biodeterioration of stone substrata of his-torical buildings and other cultural monuments, In: S. Choi, and M. Suh (eds.) Proceedings of the New Millenium International forum on conservation of cultural property. Kongju National University, Kongju, Korea, pp. 44-56.

    Google Scholar 

  • Kruschell, C. and Castenholz, R.W. (1998). The effect of solar UV and visible irradiance on the ver-tical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27: 53-72.

    Article  Google Scholar 

  • Kumar, A., Sinha, R.P. and Häder, D.-P. (1996). Effects of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc sp. J. Plant. Physiol. 148: 86-91.

    CAS  Google Scholar 

  • Kumar, A., Tyagi, M.B., Jha, P.N., Srinivas, G. and Singh, A. (2003). Inactivation of cyanobacterial nitrogenase after to ultraviolet-B radiation. Curr. Microbiol. 46: 380-384.

    Article  CAS  PubMed  Google Scholar 

  • Lakatos, M., Bilger, W. and Büdel, B. (2001). Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur. J. Phycol. 36: 367-375.

    Article  Google Scholar 

  • Lesser, M.P. and Stochaj, W.R. (1990). Photoadaptation and protection against active forms of oxy-gen in the symbiotic prokaryote prochloron-sp and its ascidian host. Appl. Environ. Microbiol. 56: 1530-1535.

    CAS  PubMed  Google Scholar 

  • Levine, E. and Thiel, T. (1987). UV-inducible DNA repair in the cyanobacteria Anabaena sp. J. Bacteriol. 169: 3988-3993.

    CAS  PubMed  Google Scholar 

  • Maeda, H., Sakuragi, Y., Bryant, D.A. and DellaPenna D. (2005). Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol. 138: 1422-1435.

    Article  CAS  PubMed  Google Scholar 

  • Masaki, K., Dunlap, W.C., Yamamoto, Y., Karube, I., Larsen, R.M. and Matsukawa, R. (1996). A natural antioxidant and its production process. Toyo Suisan Kaisha Pty. Ltd. Japanese Patent Application No. 9604230.

    Google Scholar 

  • Máté, Z., Sass, L., Szekeres, M., Vass, I. and Nagy, F. (1998). UV-B-induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J. Biol. Chem. 273: 17439-17444.

    Article  PubMed  Google Scholar 

  • Mazor, G., Kidron, G.J., Vonshak, A. and Abeliovich, A. (1996). The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21: 121-130.

    Article  CAS  Google Scholar 

  • McKenzie, R.L., Bjorn, L.O., Bais, A. and Iiyas, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 2: 5-15.

    Article  CAS  PubMed  Google Scholar 

  • Miller, S.R., Wingard, C.E. and Castenholz, R.W. (1998). Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium Synechococcus sp., subjected to high-temperature stress. Appl. Environ. Microbiol. 64: 3893-3899.

    CAS  PubMed  Google Scholar 

  • Miyake, C., Michihata, F. and Asada, K. (1991). Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol. 32: 33-43.

    CAS  Google Scholar 

  • Ng, W.-O., Zentella, R., Wang, Y., Taylor, J.-S.A. and Pakrasi, H.B. (2000). A phrA, the major photore-activating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobu-tanepyrimidine-dimer-specific DNA photolyase. Arch. Microbiol. 173: 412-417.

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. (1997). Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 14: 231-240.

    Article  CAS  Google Scholar 

  • Oren, A., Kühl, M. and Karsten, U. (1995). An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151-159.

    Article  Google Scholar 

  • Pattanaik, B. and Adhikary, S.P. (2002). Blue-green algal flora at some archaeological sites and mon-uments of India. Feddes Repert. 113: 289-300.

    Article  Google Scholar 

  • Pattanaik, B. and Adhikary, S.P. (2004). Effects of UV-B irradiation on survival, spectral characteris-tics and nitrogenase activity of cyanobacteria from different habitats. Arch. Hydrobiol. Algol. Stud. 153: 159-173.

    CAS  Google Scholar 

  • Portwich, A. and Garcia-Pichel, F. (2000). A novel prokaryotic UVB photoreceptor in cyanobac-terium Chlorogloeopsis PCC 6912. Photochem. Photobiol. 71: 493-498.

    Article  CAS  PubMed  Google Scholar 

  • Potts, M. and Friedmann, E.I. (1981). Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130: 267-271.

    Article  CAS  Google Scholar 

  • Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755-805.

    CAS  PubMed  Google Scholar 

  • Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. and Castenholz, R. (1993). The structure of scytone-min, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825-829.

    Article  CAS  PubMed  Google Scholar 

  • Quesada, A. and Vincent, W.F. (1995). Strategies of adaptation by Antarctic cyanobacteria to ultra-violet radiation. Eur. J. Phycol. 32: 335-342.

    Article  Google Scholar 

  • Quesada, A., Vincent, W.F. and Lean, D.R.S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol. Ecol. 28: 315-323.

    Article  CAS  Google Scholar 

  • Ramsing, N.B. and Prufert-Bebout, L. (1994). Motility of Microcoleus chthonoplastes subjected to dif-ferent light intensities quantified by digital image analysis. In: L.J. Stal and P. Caumette (eds.) Microbial Mats, Structure, Development and Environmental Significance, NATO ASI series, Springer-Verlag, Berlin, pp. 183-191.

    Google Scholar 

  • Reynolds, C.S., Oliver, R.L. and Walsby, A.E. (1987). Cyanobacterial dominance: the role of buoy-ancy regulation in dynamic lake environments. N. Z. J. Mar. Freshwater Res. 21: 379-390.

    Article  Google Scholar 

  • Rozema, J., Björn, L.O., Bornman, J.F., Gaberscik, A., Häder, D.-P., Trost, T., Germ, M., Klisch, M., Gröniger, A., Sinha, R.P., Lebert, M., He, Y.-Y., Buffoni-Hall, R., de Bakker, N.V.J., van de Staaij, J. and Meijkamp, B.B. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing com-pounds. J. Photochem. Photobiol. 66: 2-12.

    Article  CAS  Google Scholar 

  • Sass, L., Spetea, C., Mate, Z., Nagy, F. and Vass, I. (1997). Repair of UV-B induced damage of pho-tosystem II via de novo synthesis of the D1 and D2 reaction centre subunits in Synechocystis sp. PCC6803. Photo. Res. 54: 55-62.

    Article  CAS  Google Scholar 

  • Scherer, S., Ernst, A., Chen, T.W. and Böger, P. (1984). Rewetting of drought resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62: 418-423.

    Article  Google Scholar 

  • Scherer, S., Chen, T.W. and Böger, P. (1988). A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol. 88: 1055-1057.

    Article  CAS  PubMed  Google Scholar 

  • Schüßler, A., Meyer, T., Gehrig, H. and Kluge, M. (1997). Variations of lectin binding sites in extra-cellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. Eur. J. Phycol. 32: 233-239.

    Article  Google Scholar 

  • Shirkly, B., Kovarcik, D.P., Wright, D.J., Wilmoth, G., Prickett, T.F., Helm, R.F., Gregory, E.M. and Potts, M. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. J. Bacteriol. 182: 189-197.

    Article  Google Scholar 

  • Sinha, R.P. and Häder, D.-P. (2002). UV-Induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1: 225-236.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen K.B., Canfield, D.E., Teske, A.P. and Oren, A. (2005). Community composition of a hyper-saline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352-7365.

    Article  PubMed  CAS  Google Scholar 

  • Stal, L.J. and Krumbein, W.E. (1985). Isolation and characterization of cyanobacteria from a marine microbial mat. Bot. Mar. 28: 351-365.

    Article  Google Scholar 

  • Steiger, S., Schaefer, L. and Sandmann, G. (1999). High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J. Photochem. Photobiol. B: Biology. 52: 14-18.

    Article  CAS  Google Scholar 

  • Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005). Crucial role of extracellular polysac-charides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327-7333.

    Article  CAS  PubMed  Google Scholar 

  • Tel-or, E., Huflejt, M.E. and Packer, L. (1986). Hydroperoxide metabolism in cyanobacteria. Arch. Biochem. Biophys. 246: 396-402.

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli, L. and Giovannetti, L. (1993). Survival of diazotrophic cyanobacteria in soil. World J. Microbiol. Biotech. 9: 113-116.

    Article  Google Scholar 

  • Tripathy, P., Roy, A., Anand, N. and Adhikary, S.P. (1999). Blue-green algal flora on the rock surface of temples and monuments of India. Feddes Repert. 110: 133-144.

    Google Scholar 

  • Vass, I., Kirilovsky, D., Perewoska, I., Mate, Z., Nagy, F. and Etienne, A.L. (2000). UV-B radia-tion induced exchange of the D1 reaction centre subunits produced from the psbA2 and psbA3 genes in the cyanobacterium Synechocystis sp. PCC 6803. Eur. J. Biochem. 267: 2640-2648.

    Article  CAS  PubMed  Google Scholar 

  • Viczián, A., Máté, Z., Nagy, F. and Vass, I. (2000). UV-B induced differential transcription of psbD genes encoding the D2 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Photo. Res. 64: 257-266.

    Article  Google Scholar 

  • Vincent, W.F. and Quesada, A. (1994). Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: C.S. Weiler and P.A. Penhale (eds.) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series, American Geophysical Union, Washington, pp. 111-124.

    Google Scholar 

  • Vincent, W.F. and Roy, S. (1993). Solar ultraviolet-B radiation and aquatic primary production: dam-age, protection and recovery. Environ. Rev. 1: 1-12.

    CAS  Google Scholar 

  • Volkmann, M., Gorbushina, A.A., Kedar, L. and Oren, A. (2006). Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol. Lett. 258: 50-54.

    CAS  Google Scholar 

  • Ward, D.M., Tayne, T.A., Anderson, K.L. and Bateson, M.M. (1987). Community structure and interactions among community members in hot spring cyanobacterial mats. Symp. Soc. Gen. Microbiol. 41: 179-210.

    CAS  Google Scholar 

  • Wolfe-Simon, F., Grzebyk, D., Schofield O. and Falkowski, P.G. (2005). The role and evolution of superoxide dismutases in algae. J. Phycol. 41: 453-465.

    Article  CAS  Google Scholar 

  • Wright, D.J., Smith, S.C., Joardar, V., Scherer, S., Jervis, J., Warren, A., Helm, R.F. and Potts, M. (2005). UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (cyanobacteria). J. Biol. Chem. 280: 40271-40281.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Gao K., Villafane, V.E., Watanabe, T. and Helbling, E.W. (2005). Effects of solar UV radia-tion on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71: 5004-5013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pattanaik, B., Schumann, R., Karsten, U. (2007). Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_2

Download citation

Publish with us

Policies and ethics