Skip to main content

Integrated Management Of Insect Borne Viruses By Means Of Transmission Interference As An Alternative To Pesticides

  • Chapter
General Concepts in Integrated Pest and Disease Management

Abstract

Viruses are important plant pathogens responsible of yield and quality losses in many crops. Most plant viruses are spread in nature surpassing plant defence barriers with the help of vector organisms, mainly insects. The application of pesticides is an insufficient strategy to stop virus dissemination and, in turn, it can cause important environmental damages. As a consequence, an active area of research is currently devoted to explore alternatives to the abuse of pesticides including, for instance, attempts to unravel the molecular mechanisms operating during insect transmission of plant viruses. All these efforts are aimed to design strategies of interference with the transmission process, which will eventually become part of Integrated Disease Management programmes for the control of virus pathogens. The present chapter reviews the available and potential means to interfere with transmission, and the prospects of such strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranovsky, A. A., Lesemann, D.E., Maiss, E., Hull, R., & Atabekov, J. G. (1995). “Rattlesnake” structure of a filamentous plant RNA virus built of two capsid proteins. Proceedings of the National Academy of Sciences USA, 92, 2470-2473.

    CAS  Google Scholar 

  • Alvarez, A. E., Tjallingii, W. F. Garzo, E., Vleeshouwers, V., Dicke, M., & Vosman, B. (2006) Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomologia Experimentalis et Applicata 121, 145-157.

    Google Scholar 

  • Ammar, E. D., Järlfors, U., & Pirone, T. P. (1994). Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Phytopathology, 84, 1054-1060.

    Google Scholar 

  • Anamdam, R. J., & Doraiswamy, S. (2002). Role of barrier crops in reducing the incidence of mosaic disease in chilli. Journal of Plant Diseases and Protection, 109, 109-112.

    Google Scholar 

  • Antignus, Y. (2000). Manipulation of wave lenght-dependent behavior of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Researchearch, 71, 213-220.

    CAS  Google Scholar 

  • Atreya, C. D., & Pirone, T. P. (1993). Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proceedings of the National Academy of Sciences USA, 90, 11919-11923.

    Google Scholar 

  • Atreya, C. D., Atreya, P. L., Thornbury, D. W., & Pirone, T. P. (1992). Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology, 191, 106-11.

    CAS  PubMed  Google Scholar 

  • Avilla, C., Collar, J. L., Duque, M., Perez, P., & Fereres, A. (1997). Impact of floating rowcovers on bell pepper yield and virus incidence. HortScience, 32, 882-883.

    Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B., & Dinesh-Kumar, S.P. (1997). Signaling in plant-microbe interactions. Science, 276, 726-33.

    CAS  PubMed  Google Scholar 

  • Bandla, M. D., Campbell, L. R., Ullman, D. E., & Sherwood, J. L. (1998). Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology, 88, 98-104.

    CAS  PubMed  Google Scholar 

  • Bandla, M. D., Campbell, L. R., Ullman, D. E., & Sherwood, J. L. (1998). Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology, 88, 98-104.

    CAS  PubMed  Google Scholar 

  • Baumann, P., Baumann, L., Lai, C. Y., Rouhbakhsh, D., Moran, N. A., & Clark, M. A. (1995). Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annual Review of Microbiology, 49, 55-94.

    CAS  PubMed  Google Scholar 

  • Beale, M. H., Birkett, M. A., Bruce, T. J. A., Chamberlain, K., Field, L. M., Huttly, A. K., et al. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proceedings of the National Academy of Sciences USA, 103, 10509-10513.

    Google Scholar 

  • Berger, P. H., & Pirone, T. P. (1986). The effect of helper component on the uptake and localization of potyviruses in Myzus persicae. Virology, 153, 256-261.

    CAS  PubMed  Google Scholar 

  • Birkett M. A., & Pickett J. A. (2003). Aphid sex pheromones: From discovery to commercial production. Phytochemistry, 62, 651-656.

    CAS  PubMed  Google Scholar 

  • Birkett M. A., Chamberlaln K., Guerrieri E., Pickett J.A., Wadhams L.J., & Yasuda T. (2003). Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. Journal of Chemical Ecology, 29, 1589-1600.

    CAS  PubMed  Google Scholar 

  • Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world’s crops: an identification and information guide. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Blanc, S., Hébrard, E., Drucker, M., & Froisart, R. (2001). Molecular basis of vector transmission: caulimoviruses. In K. Harris, O. P. Smith & J. E. Duffus (Eds.) Virus-Insect-Plant Interactions (pp. 143-166). San Diego: Academic Press.

    Google Scholar 

  • Brault, V., Bergdoll, M., Mutterer, J., Prasad, V., Pfeffer, S., Erdinger, M., et al. (2003). Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. Journal of Virology, 77, 3247-3256.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brault, V., Mutterer, J., Scheidecker, D., Simonis, M. T., Herrbach, E., Richards, K., & Ziegler-Graff, V. (2000). Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. Journal of Virology, 74, 1140-1148.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brault, V., Perigon, S., Reinbold, C., Erdinger, M., Scheidecker, D., Herrbach, E., et al. (2005), The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. Journal of Virology, 79, 9685-9693.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brault, V., Van den Heuvel, J. F., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., et al. (1995). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal, 14, 650-659.

    CAS  PubMed  Google Scholar 

  • Brommonschenkel, S. H., Frary, A., Frary, A., & Tanksley, S. D. (2000). The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Molecular Plant Microbe Interactions, 13, 1130-1138.

    CAS  PubMed  Google Scholar 

  • Bruce, T. J. A., Birkett, M. A., Blande, J., Hooper, A. M., Martin, J. L., Khambay, B., et al. (2005). Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Management Science, 61, 1115-1121.

    CAS  PubMed  Google Scholar 

  • Brunt, A. A., Crabtree, M. J., Dallwitz, A. J., & Watson, L. (1996). Viruses of plants. Cambridge, UK: CAB International.

    Google Scholar 

  • Carlson, J., Olson, K., Higgs, S., & Beaty, B. (1995) Molecular genetic manipulation of mosquito vectors. Annual Review of Entomology, 40:359-88.

    CAS  PubMed  Google Scholar 

  • Carlson, J., Suchman, E., & Buchatsky, L. (2006). Densoviruses for control and genetic manipulation of mosquitoes. Advances in Virus Research, 68, 361-92

    CAS  PubMed  Google Scholar 

  • Chen, J. Q., Martin, B., Rahbe, Y., & Fereres, A. (1997). Early intracellular punctures by two aphid species on near-isogenic melon lines with and without the virus aphid transmission (Vat) resistance gene. European Journal of Plant Pathology, 103, 521-536.

    Google Scholar 

  • Cohen, S., & Marco, S. (1973). Reducing the spread of aphid-transmitted viruses in peppers by trapping the aphids on sticky yellow polyethilene sheets. Phytopathology, 63, 1207-1209.

    Google Scholar 

  • Coutts, B. A., Thomas-Carroll, M. L., & Jones, R. A. C. (2004). Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: Spatial dynamics and validation of control measures. Annals of Applied Biology, 145, 231-245.

    Google Scholar 

  • Creamer, R., Sanogo, S., El-Sebai, O.A., Carpenter, J., & Sanderson, R. (2005). Kaolin-based foliar reflectant affects physiology and incidence of beet curly top virus but not yield of chile pepper. HortScience, 40, 574-576.

    Google Scholar 

  • Czosnek, H., Ghanim, M., Morin, S., Rubinstein, G., Fridman, V., & Zeidan, M. (2001). Whiteflies: vectors, and victims (?), of geminiviruses. Advances in Virus Research, 57, 291-322.

    CAS  PubMed  Google Scholar 

  • Diaz, B.M., Biurrún, R., Moreno, A., Nebreda, M., & Fereres, A. (2006). Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infecting crisp lettuce. HortScience, 41, 711-716

    Google Scholar 

  • Diaz-Pendon, J. A., Fernandez-Munoz, R., Gomez-Guillamon, M. L. & Moriones, E. (2005). Inheritance of resistance to Watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression, and aphid transmission. Phytopathology. 95, 840-846.

    PubMed  Google Scholar 

  • Divol, F., Vilaine, F., Thibivilliers, S., Amselem, J., Palauqui, J.C., Kusiak, C., & Dinant, S. (2005). Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology, 57, 517-540.

    CAS  PubMed  Google Scholar 

  • Dolja, V. V., Kreuze, J. F., & Valkonen, J. P. (2006). Comparative and functional genomics of closteroviruses. Virus Research, 117, 38-51.

    CAS  PubMed  Google Scholar 

  • Drucker, M., Froissart, R., Hebrard, E., Uzest, M., Ravallec, M., Esperandieu, P., et al. (2002). Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proceedings of the National Academy of Sciences USA, 99, 2422-2427.

    Google Scholar 

  • Eigenbrode, S. D., Ding, H., Neufeld, J., & Duetting, P. (2006). Effects of hydrophilic and hydrophobic kaolin-based particle films on pea aphid (Homoptera: Aphididae) and its entomopathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). Journal of Economical Entomology, 99, 23-31.

    Google Scholar 

  • Eigenbrode, S. D., Ding, H., Shiel, P., & Berger, P. H. (2002). Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society - Biological Sciences (Series B), 269, 455-460.

    CAS  Google Scholar 

  • Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (Eds.) (2004). Virus Taxonomy, VIIIth Report of the ICTV. London: Elsevier/Academic Press.

    Google Scholar 

  • Fereres, A. (2000). Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Research, 71, 221-231.

    CAS  PubMed  Google Scholar 

  • Fernandez-Calvino, L., Lopez-Abella, D., Lopez-Moya, J. J., & Fereres, A. (2006). Comparison of potato virus Y and plum pox virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica, 34, 315-324.

    Google Scholar 

  • Filichkin, S. A., Brumfield, S., Filichkin, T. P., & Young, M. J. (1997). In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. Journal of Virology, 71, 569-77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franz, A.W., Sanchez-Vargas, I., Adelman, Z. N., Blair, C. D., Beaty, B. J., James, A. A., & Olson, K. E. (2006). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences USA, 103, 4198-203.

    CAS  Google Scholar 

  • Franz, A. W., Van der Wilk, F., Verbeek, M., Dullemans, A. M., & Van den Heuvel, J. F. (1999). Faba bean necrotic yellows virus (genus Nanovirus) requires a helper factor for its aphid transmission. Virology, 262, 210-219.

    CAS  PubMed  Google Scholar 

  • Froissart, R., Michalakis, Y., & Blanc, S. (2002). Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology, 92, 576-579.

    PubMed  Google Scholar 

  • Garret, A., Kerlan, C., & Thomas, D. (1993). The intestine is a site of passage for potato leafroll virus from the gut lumen into the haemocoel in the aphid vector Myzus persicae. Archives of Virology, 131, 377-392.

    CAS  PubMed  Google Scholar 

  • Garzo, E. I., Duque, M., & Fereres, A. (2004). Transmission efficiency of different non-persistent viruses infecting melon by four aphid species. Spanish Journal of Agricultural Research, 2, 369-76.

    Google Scholar 

  • Gildow, F. E. (1987). Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids. Advances in Disease Vector Research, 4, 93-120.

    Google Scholar 

  • Gildow, F. E. (1993). Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology, 83, 270-277.

    Google Scholar 

  • Gildow, F. E., & Gray, S. M. (1993). The aphid salivary gland basal lamina as a selective barrier associated with vector specific transmission of barley yellow dwarf luteoviruses. Phytopathology, 83, 1293-1302.

    Google Scholar 

  • Goldbach, R., Bucher, E., & Prins, M. (2003). Resistance mechanisms to plant viruses: an overview. Virus Research, 92, 207-212.

    CAS  PubMed  Google Scholar 

  • Gordon, K. H., & Waterhouse, P. M. (2006). Small RNA viruses of insects: expression in plants and RNA silencing. Advances in Virus Research, 8, 459-502.

    Google Scholar 

  • Gray, S. M., & Banerjee, N. (1999). Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63, 128-148.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray, S., & Gildow, F.E .(2003). Luteovirus-aphid interactions. Annual Review of Phytopathology, 41, 539-566.

    CAS  PubMed  Google Scholar 

  • Hardie, J., Pickett, J. A., Pow, E. M. & Smiley, D. W. M. (1999). Pheromones of non-lepidopteran insects associated with agricultural plants. Hardie, J. & Minks, A. K. (Eds.). CAB International, Wallingford, 227-250.

    Google Scholar 

  • Harrington, R., Katis, N. & Gibson, R. W. (1986). Field assessment of the relative importance of different aphid species in the transmission of potato virus Y. Potato Research, 29, 67-76.

    Google Scholar 

  • Herrbach, E. (1992). Alarm pheromones and allelochemicals as a mean of aphid control. Netherland Jounal of Plant Patholology, 98 (suppl. 2), 63-71.

    CAS  Google Scholar 

  • Herselman, L., Thwaites, R., Kimmins, F. M., Courtois, B., Van der Merwe, P. J. A., & Seal, S. E. (2004). Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theoretical and Applied Genetics. 109, 1426-1433.

    CAS  PubMed  Google Scholar 

  • Hooks, C. R., & Fereres, A. (2006). Protecting crops from non-persistently aphid-transmitted viruses: A review on the use of barrier plants as a management tool. Virus Research, 120, 1-16.

    CAS  PubMed  Google Scholar 

  • Hull, R. (2002). Matthews’ Plant Virology, Fourth Edition. London: Academic Press.

    Google Scholar 

  • Hunt, E. J., Pritchard, J., Bennett, M. J., Zhu, X., Barrett, D. A., Allen, T., et al. (2006). The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect. Molecular Ecology, 15, 4203-4213.

    CAS  PubMed  Google Scholar 

  • Irwin, M. E. (1999). Implications of movement in developing and deploying integrated pest management strategies. Agricultural and Forest Metereology, 97, 235-248.

    Google Scholar 

  • Irwin, M.E., Ruesink, W.G., Isard, S.A., & Kampmeier, G.E. (2000). Mitigating epidemics caused by non-persistently transmitted aphid-borne viruses: the role of the plant environment. Virus Research, 71, 185-211.

    CAS  PubMed  Google Scholar 

  • Jimenez-Martinez, E. S., & Bosque-Perez, N. A. (2004). Variation in barley yellow dwarf virus transmission efficiency by Rhopalosiphum padi (Homoptera: Aphididae) after acquisition from transgenic and nontransformed wheat genotypes. Journal of Economical Entomology, 97, 1790-1796.

    CAS  Google Scholar 

  • Jones, R.A.C. (1994). Effect of mulching with cereal straw and row spacing on spread of bean yellow mosaic potyvirus into narrow-leafed lupins (Lupinus angustifolius). Annals of Applied Biology, 124, 45-58.

    Google Scholar 

  • Jones, R.A.C. (2004). Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100, 5-30.

    CAS  PubMed  Google Scholar 

  • Jones, R.A.C. (2005). Patterns of spread of two non-persistently aphid-borne viruses in lupin stands under four different infection scenarios. Annals of Applied Biology, 146, 337-350.

    Google Scholar 

  • Kaloshian, I. (2004). Gene-for-gene disease resistance: bridging insect pest and pathogen defense. Journal of Chemical Ecology, 30, 2419-2438.

    CAS  PubMed  Google Scholar 

  • Kaloshian, I., & Walling, L. L. (2005). Hemipterans as plant pathogens. Annual Review of Phytopathology, 43, 491-521.

    CAS  PubMed  Google Scholar 

  • Kang, B. C., Yeam, I., & Jahn, M. M. (2005). Genetics of plant virus resistance. Annual Review of Phytopathology, 43, 581-621

    CAS  PubMed  Google Scholar 

  • Klingler, J., Creasy, R., Gao, L., Nair, R. M., Calix, A. S., Jacob, H. S., Edwards, O. R., & Singh, K. B. (2005). Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiology, 137, 1445-1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kring, J. B. (1970). Determining the number of aphids over reflective surfaces. Journal of Economical Entomology, 63, 1350-1353.

    Google Scholar 

  • Lapidot, M., Friedmann, M., Pilowsky, M., Ben-Joseph, R., & Cohen, S. (2001). Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology, 91, 1209-1213.

    CAS  PubMed  Google Scholar 

  • Lecoq, H., Cohen, S., Pitrat, M., & Labonne, G. (1979). Resistance to cucumber mosaic virus transmission by aphids in Cucumis melo. Phytopathology, 69, 1223-1225

    Google Scholar 

  • Lecoq, H., Labonne, G., & Pitrat, M. (1980). Specificity of resistance. to virus transmission by aphids in Cucumis melo. Annales de Phytopathologie, 12, 139-144.

    Google Scholar 

  • Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100,31-39.

    CAS  PubMed  Google Scholar 

  • Leh, V., Jacquot, E., Geldreich, A., Hermann, T., Leclerc, D., Cerutti, M., et al. (1999). Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO Journal, 18, 7077-7085.

    CAS  PubMed  Google Scholar 

  • Li, C., Cox-Foster, D., Gray, S. M., & Gildow, F. (2001). Vector specificity of Barley Yellow Dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology, 286, 125-133.

    CAS  PubMed  Google Scholar 

  • Liang, G., & Liu, T. X. (2002). Repellency of a kaolin particle film, Surround, and a mineral oil, Sunspray oil, to silverleaf whitefly (Homoptera: Aleyrodidae) on melon in the laboratory. Journal of Economical Entomology, 95, 317-24.

    CAS  Google Scholar 

  • Liu, S., He, X., Park, G., Josefsson, C., & Perry, K. L. (2002). A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. Journal of Virology, 76, 9756-9762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Abella, D., Bradley, R. H. E. & Harris, K. F. (1988). Correlation between stylet paths made during superficial probing and the ability of aphids to transmit non persistent viruses. In: Harris, K. F. (Ed.). Advances in disease vector research (v. 5). Springer-Verlag, New York, 251-287.

    Google Scholar 

  • Lovisolo, O., Hull, R., & Rosler, O. (2003). Coevolution of viruses with hosts and vectors and possible paleontology. Advances in Virus Research, 62, 325-379.

    CAS  PubMed  Google Scholar 

  • MacDonald, K. M., Hamilton, J. G. C., Jacobson, R., & Kirk, W.D.J. (2002). Effects of alarm pheromone on landing and take-off by adult western flower thrips. Entomologia Experimentalis et Applicata, 103, 279-282.

    CAS  Google Scholar 

  • Martelli, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Candresse, T., Coutts, R. H., et al. (2002). The family Closteroviridae revised. Archives of Virology 147, 2039-44.

    CAS  PubMed  Google Scholar 

  • Martin, B., Collar, J. L., Tjallingii, W. F., & Fereres, A. (1997). Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology, 78, 2701-2705.

    CAS  PubMed  Google Scholar 

  • Martin, B., Rahbe, Y., & Fereres, A. (2003). Blockage of stylet tips as the mechanism of resistance to virus transmission by Aphis gossypii in melon lines bearing the Vat gene. Annals of Applied Biology, 142, 245-250.

    CAS  Google Scholar 

  • Medeiros, R. B., Ullman, D. E., Sherwood, J. L. & German, T. L. (2000). Immunoprecipitation of a 50KDa protein: a candidate receptor component for tomato spotted wilt tospovirus (Bunyaviridae) in its main vector, Frankliniella occidentalis. Virus Research, 67, 109-118.

    CAS  PubMed  Google Scholar 

  • Moran, P. J., & Thompson, G. A. (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 125, 1074-1085.

    Google Scholar 

  • Moran, P. J., Cheng, Y., Cassell, J. L., & Thompson, G. A. (2002). Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry and Physiology, 51, 182-203.

    CAS  PubMed  Google Scholar 

  • Nault, L. R. (1997). Arthropod transmission of plant viruses: a new synthesis. Annals of the Entomoogical Society of America, 90, 521-541.

    Google Scholar 

  • Ng, J. C., & Falk, B. W. (2006). Virus-Vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology, 44, 183-212.

    CAS  PubMed  Google Scholar 

  • Ng, J. C., & Perry, K. L. (2004). Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 5, 505-511.

    PubMed  Google Scholar 

  • Ng, J. C., Josefsson, C., Clark, A. J., Franz, A. W., & Perry, K. L. (2005). Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. Virology, 332, 397-405.

    CAS  PubMed  Google Scholar 

  • Nombela, G., Williamson, V. M., & Muniz, M. (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant Microbe Interactions, 16, 645-649.

    CAS  PubMed  Google Scholar 

  • Palacios, I., Drucker, M., Blanc, S., Leite, S., Moreno, A., & Fereres, A. (2002). Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. Journal of General Virology, 83, 3163-3171.

    CAS  PubMed  Google Scholar 

  • Parker, W. E., Howard, J. J., Foster, S. P. & Denholm, I. (2006). The effect of insecticide application sequences on the control and insecticide resistance status of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), on field crops of potato. Pest Management Science, 62, 307-315.

    CAS  PubMed  Google Scholar 

  • Peiffer, M. L., Gildow, F. E. & Gray, S. M. (1997). Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. Journal of General Virology, 78, 495-503.

    CAS  PubMed  Google Scholar 

  • Peremyslov, V. V., Andreev, I. A., Prokhnevsky, A. I., Duncan, G. H., Taliansky, M. E., & Dolja, V. V. (2004). Complex molecular architecture of beet yellows virus particles. Proceedings of the National Academy of Sciences USA, 101, 5030-5035.

    CAS  Google Scholar 

  • Perring, T. M., Gruenhagen, N. M. & Farrar, C. A. (1999). Management of plant viral diseases through chemical control of insect vectors. Annual Review of Entomology, 44, 457-81.

    CAS  PubMed  Google Scholar 

  • Pirone, T. P., & Perry, K. L. (2002). Aphid-non-persistent transmission. Advances in Botanical Research, 36, 1-19.

    CAS  Google Scholar 

  • Pirone, T. P., & Blanc, S. (1996). Helper-dependent vector transmission of plant viruses. Annual Review of Phytopathology, 34, 227-247.

    CAS  PubMed  Google Scholar 

  • Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., & Bron, P. (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. Journal of Biological Chemistry, 278, 23753-23761.

    CAS  PubMed  Google Scholar 

  • Plisson, C., Uzest, M., Drucker, M., Froissart, R., Dumas, C., Conway, J., et al. (2005). Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. Journal of Molecular Biology, 346, 267-277.

    CAS  PubMed  Google Scholar 

  • Powell, G. & Hardie, J. (2000). Host-selection behaviour by genetically identical aphids with different plant preferences. Physiological Entomology. 25, 54-62.

    Google Scholar 

  • Powell, G. (2005). Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. Journal of General Virology 86, 469-472

    CAS  PubMed  Google Scholar 

  • Powell, G., Hardie, J. & Pickett, J. A. (1998). The effects of antifeedant compounds and mineral oil on stylet penetration and transmission of potato virus Y by Myzus persicae (Sulzer) (Hom., Aphididae). Journal of Applied Entomology, 122, 331-333.

    CAS  Google Scholar 

  • Power, A. G. (2000). Insect transmission of plant viruses: a constraint on virus variability. Current Opinion in Plant Biology 3, 336-340.

    CAS  PubMed  Google Scholar 

  • Prins, M. (2003). Broad virus resistance in transgenic plants. Trends in Biotechnology, 21, 373-375.

    CAS  PubMed  Google Scholar 

  • Raccah, B. (1986). Nonpersistent viruses: epidemiology and control. Advance in Virus Research 31, 387-429.

    CAS  Google Scholar 

  • Raccah, B., Gal-On, A., & Eastop, V. F. (1985). The role of flying aphid vectors in the transmission of cucumber mosaic virus and potato virus Y to peppers in Israel. Annals of Appied Biology, 106, 451-460.

    Google Scholar 

  • Raccah, B., Huet, H., & Blanc, S. (2001). Molecular basis of vector transmission: Potyvirus. In K. F. Harris, O. P. Smith & J. E. Duffus (Eds.) Virus-Insect-Plant Interactions (pp. 181-206). San Diego: Academic Press.

    Google Scholar 

  • Reinbold, C., Gildow, F. E., Herrbach, E., Ziegler-Graff, V., Goncalves, M. C., Van Den Heuvel, J. F., & Brault, V. (2001). Studies on the role of the minor capsid protein in transport of Beet western yellows virus through Myzus persicae. Journal of General Virology, 82, 1995-2007.

    CAS  PubMed  Google Scholar 

  • Reinbold, C., Herrbach, E. & Brault, V. (2003). Posterior midgut and hindgut are both sites of acquisition of Cucurbit aphid-borne yellows virus in Myzus persicae and Aphis gossypii. Journal of General Virology 84, 3473-3484.

    CAS  PubMed  Google Scholar 

  • Reinbold, C., Herrbach, E., & Brault, V. (2003). Posterior midgut and hindgut are both sites of acquisition of Cucurbit aphid-borne yellows virus in Myzus persicae and Aphis gossypii. Journal of General Virology, 84, 3473-3484.

    CAS  PubMed  Google Scholar 

  • Ritzenthaler, C. (2005). Resistance to plant viruses: old issue, news answers? Current Opinion in Biotechnology, 16, 118-122.

    CAS  PubMed  Google Scholar 

  • Robert, Y., Woodford, J. A., & Ducray-Bourdin, D.G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Research, 71, 33-47.

    CAS  PubMed  Google Scholar 

  • Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences USA 95, 9750-9754.

    CAS  Google Scholar 

  • Rouze-Jouan, J., Terradot, L., Pasquer, F., Tanguy, S., Giblot Ducray-Bourdin, D. D. (2001). The passage of Potato leafroll virus through Myzus persicae gut membrane regulates transmission efficiency. Journal of General Virology, 82, 17-23.

    CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer, V., Boskovic, J., Alfonso, C., Rivas, G., Llorca, O., Lopez-Abella, D., & Lopez-Moya, J. J. (2005). Structural analysis of tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. Journal of Virology 79, 3758-3765.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabater-Munoz, B., Legeai, F., Rispe, C., Bonhomme, J., Dearden, P., Dossat, C., et al. (2006). Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biology 7, R21.

    PubMed Central  PubMed  Google Scholar 

  • Sanchez-Vargas, I., Travanty, E.A., Keene, K.M., Franz, A.W., Beaty, B.J., Blair, C.D., & Olson, K.E. (2004). RNA interference, arthropod-borne viruses, and mosquitoes. Virus Research, 102, 65-74.

    CAS  PubMed  Google Scholar 

  • Saucke, H., & Döring, T. F. (2004). Potato virus Y reduction by straw mulch in organic potatoes. Annals of Applied Biology, 144, 347-355.

    Google Scholar 

  • Sauvion, N., Mauriello, V., Renard, B., & Boissot, N. (2005). Impact of melon accessions resistant to aphids on the demographic potential of silverleaf whitefly. Journal of Economical Entomology, 98, 557-567.

    Google Scholar 

  • Seddas, P., Boissinot, S., Strub, J. M., Van Dorsselaer, A., Van Regenmortel, M. H. & Pattus, F. (2004). Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 325, 399-412.

    CAS  PubMed  Google Scholar 

  • Seddas, P., Boissinot, S., Strub, J. M., Van Dorsselaer, A., Van Regenmortel, M. H., & Pattus, F. (2004). Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology, 325, 399-412.

    CAS  PubMed  Google Scholar 

  • Shao, C., Wu, J., Zhou, G., Sun, G., Peng, B., Lei, J., et al. (2003). Ectopic expression of the spike protein of Rice Ragged Stunt Oryzavirus in transgenic rice plants inhibits transmission of the virus to insects. Molecular Breeding, 11, 295-301.

    CAS  Google Scholar 

  • Shelton, A. M., & Badenes-Perez F. R. (2006). Concepts and applications of trap cropping in pest management. Annual Review of Entomology, 51, 285-308.

    CAS  PubMed  Google Scholar 

  • Soosaar, J. L., Burch-Smith, T. M., & Dinesh-Kumar, S. P. (2005). Mechanisms of plant resistance to viruses. Nature Reviews in Microbiology, 3, 789-98.

    CAS  Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005) Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83-116.

    CAS  PubMed  Google Scholar 

  • Takami, N. (1901). On dwarf disease of rice plant and “tsumaguro-yokabai”. Journal of the Japan Agriculture Society, 241, 22-30.

    Google Scholar 

  • Tenllado, F., Llave, C., & Diaz-Ruiz, J.R. (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102, 85-96.

    CAS  PubMed  Google Scholar 

  • Tepfer, M. (2002). Risk assessment of virus-resistant transgenic plants. Annual Review of Phytopathology, 40, 467-491.

    CAS  PubMed  Google Scholar 

  • Thresh, J. M. (1988). Eradication as a virus control measure. In: Control of plant diseases: Costs and beneficts. Clifford, B. C. & Lester, E. (Eds.). Blackwell Scientific, Oxford, 155-194.

    Google Scholar 

  • Thresh, J. M. (2006a). Plant virus epidemiology: the concept of host genetic vulnerability. Advances in Virus Research, 67, 89-125.

    CAS  Google Scholar 

  • Thresh, J. M. (2006b). Control of tropical plant virus diseases. Advances in Virus Research, 67, 245-95.

    CAS  Google Scholar 

  • Tian, T., Rubio, L., Yeh, H. H., Crawford, B., & Falk, B. W. (1999). Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. Journal of General Virology, 80, 1111-1117.

    CAS  PubMed  Google Scholar 

  • Torrance, L., Andreev, I. A., Gabrenaite-Verhovskaya, R., Cowan, G., Makinen, K., & Taliansky, M. E. (2006). An unusual structure at one end of potato potyvirus particles. Journal of Molecular Biology, 357, 1-8.

    CAS  PubMed  Google Scholar 

  • Ullman, D. E., Cho, J. J., Mau, R. F. L., Westcot, D. M., & Custer, D. M. (1992). A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology, 82, 1333-1342.

    Google Scholar 

  • Ullman, D. E., Whitfield, A. E. & German, T. L. (2005). Thrips and tospoviruses come of age: mapping determinants of insect transmission. Proceedings of the National Academy of Sciences USA, 102, 4931-4932.

    Google Scholar 

  • Van den Heuvel, J. F., Bruyere, A., Hogenhout, S. A., Ziegler-Graff, V., Brault, V., Verbeek, M., et al. (1997). The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. Journal of Virology, 71, 7258-65.

    PubMed Central  PubMed  Google Scholar 

  • Van den Heuvel, J. F., Verbeek, M. & Van der Wilk, F. (1994). Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology, 75, 2559-65.

    PubMed  Google Scholar 

  • Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., & Sanchez-Serrano, J. J. (2001). Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences USA, 98, 8139-8144.

    CAS  Google Scholar 

  • Vos, P., Simons, G., Jesse, T., Wijbrandi, J., Heinen, L., Hogers, R., et al. (1998). The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology, 16, 1365-1369.

    CAS  PubMed  Google Scholar 

  • Walkey, G. A. (1985) Virus transmission by biological means. In: Applied Plant Virology. Walkey, G. A. (Ed.). William Heinemann, London, 158-195.

    Google Scholar 

  • Walton, V. M., Daane, K. M., Bentley, W. J., Millar, J. G., Larsen, T. E., & Malakar-Kuenen, R. (2006). Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards . Journal of Economic Entomology, 99, 1280-1290.

    PubMed  Google Scholar 

  • Wang, J. Y., Chay, C., Gildow, F. E., & Gray, S. M. (1995). Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology, 206, 954-962.

    CAS  PubMed  Google Scholar 

  • Wang, R. Y., Ammar, E. D., Thornbury, D. W., Lopez-Moya, J. J. & Pirone, T. P. (1996). Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. Journal of General Virology, 77, 861-867.

    CAS  PubMed  Google Scholar 

  • Wang, R. Y., & Pirone, T. P. (1996). Mineral oil interferes with retention of tobacco etch potyvirus in the stylets of Myzus persicae. Phytopathology, 86, 820-823.

    Google Scholar 

  • Webb, S. E. & Linda, S. B. (1993). Effect of oil and insecticide on epidemics of potyviruses in watermelon in Florida. Plant disease, 77, 869-874.

    CAS  Google Scholar 

  • Weisz, R., Fleischer, S. & Smilowitz, Z. (1995). Map generation in highvalue horticultural integrated pest management: appropiate interpolation methods for site-specific pest management of Colorado potato bettle (Coleoptera: Chrysomelidae). Journal of Economical Entomology, 88, 1650-1657.

    Google Scholar 

  • Weng, Y., Lazar, M. D., Michels, G. J. Jr, & Rudd, J. C. (2004). Phenotypic mechanisms of host resistance against greenbug (Homoptera: Aphididae) revealed by near isogenic lines of wheat. Journal of Economical Entomology, 97, 654-60.

    Google Scholar 

  • Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-thrips interactions. Annual Review of Phytopathology, 43, 459-89.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

FernáNdez-Calvino, L., LóPez-Abella, D., LóPez-Moya, J.J. (2007). Integrated Management Of Insect Borne Viruses By Means Of Transmission Interference As An Alternative To Pesticides. In: Ciancio, A., Mukerji, K.G. (eds) General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6061-8_11

Download citation

Publish with us

Policies and ethics