Skip to main content

How to Create and Deploy Infection Models for Plant Pathogens

  • Chapter
General Concepts in Integrated Pest and Disease Management

Part of the book series: Integrated Management of Plants Pests and Diseases ((IMPD,volume 1))

Abstract

This chapter is designed as a practical guide on how to create and deploy infection models for plant disease forecasting. Although, infection models have been widely and successfully used in plant pathology for many years, there is a general lack of standards for model development. In part, this is because most disease forecast models tend to be either complex or specialized. The first part of this guide is an overview of the biological considerations for infection, including temperature, moisture and splash dispersal requirements. The second part is a review of the strengths and weaknesses of new and commonly used infections models. Since weather conditions and infection risk alone does not determine disease severity, the guide provides some practical suggestions for integrating host, pest and cultural factors into a disease forecast in the third part of the chapter. The fourth part covers the best methods for collecting or obtaining the weather inputs used in infection models. The fifth section covers techniques for model validation both from a biological and commercial perspective. The final section briefly covers techniques for information delivery focusing on the internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldwinckle, H. S., Pearson, R. C., & Seem, R. C. (1980). Infection periods of Gymnosporangium juniperi-virginianae on apple. Phytopathology, 70, 1070-1073.

    Article  Google Scholar 

  • Anonymous. (2006). Models: Insects, Mites, Diseases, Plants, and Beneficials. Available at http://www.ipm.ucdavis.edu/MODELS/index.html.

    Google Scholar 

  • Arauz, L. F., & Sutton, T. B. (1989). Temperature and wetness duration requirements for apple infection by Botryosphaeria obtusa. Phytopathology, 79, 440-444.

    Article  Google Scholar 

  • Bailey, J. E. (1999). Integrated method for organizing, computing and deploying weather-based advisories. Peanut Science, 26, 74-80.

    Article  Google Scholar 

  • Baxter, J., Gleason, M., Taylor, E., & Koehler, K. (2005). Impact of sensor placement in apple tree canopies on performance of a warning system for sooty blotch and flyspeck. Phytopathology, 95S 57.

    Google Scholar 

  • Berger, R. D. (1973). Early blight of celery: analysis of disease spread in Florida. Phytopathology, 63, 1161-1165.

    Article  Google Scholar 

  • Biggs, A. R., & Northover, J. (1988). Early and late-season susceptibility of peach fruits to Monilinia fructicola. Plant Disease, 72, 1070-1074.

    Article  Google Scholar 

  • Broome, J. C., English, J. T., Marois, J. J., Latorre, B. A., & Aviles, J. C. (1995). Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology, 85, 97-102.

    Article  Google Scholar 

  • Bugiani, R., Tiso, R., Butturini, A., Govoni, P., & Ponti, I. (1996). Forecasting models and warning services in Emilia-Romagna (Italy). Bulletin OEPP, 26, 595-603.

    Article  Google Scholar 

  • Bulger, M. A., Ellis, M. A., & Madden, L. V. (1987). Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology, 77, 1225-1230.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to Plant Disease Epidemiology. John Wiley and Sons, NY.

    Google Scholar 

  • Chokmani, K., Viau, A. A., & Bourgeois, G. (2005). Regionalization of outputs of two crop protection models using geostatistical tools and NOAA-AVHRR images. Agronomy for Sustainable Development, 25, 79-92.

    Article  Google Scholar 

  • Cohen, Y. (1977). The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with Pseudoperonospora cubensis. Canadian Journal of Botany, 55, 1478-1487.

    Article  Google Scholar 

  • Colhoun, J. (1973). Effects of environmental factors on plant disease. Annual Review of Phytopathology, 11, 343-364.

    Article  Google Scholar 

  • Cu, R. M., & Phipps, P. M. (1993). Development of a pathogen growth response model for the Virginia Peanut Leafspot advisory program. Phytopathology, 83, 195-201.

    Article  Google Scholar 

  • Davis, J. M., & Main, C. E. (1984). A regional analysis of the meteorological aspects of the spread and development of blue mold on tobacco (Nicotiana tabacum). Boundary Layer Meteorology, 28, 271-304.

    Article  Google Scholar 

  • Duthie, J. A. (1997). Models of the response of foliar parasites to the combined effects of temperature and duration of wetness. Phytopathology, 87, 1088-1095.

    Article  CAS  PubMed  Google Scholar 

  • Eisensmith, S. P., & Jones, A. L. (1981). A model for detecting infection periods of Coccomyces hiemalis on sour cherry. Phytopathology, 71, 728-732.

    Article  Google Scholar 

  • Evans, K. J., Nyquist, W. E., & Latin, R. X. (1992). A model based on temperature and leaf wetness duration for establishment of Alternaria leaf blight of muskmelon. Phytopathology, 82, 890-895.

    Article  Google Scholar 

  • Eversmeyer, M. G., & Kramer, C. L. (1998). Models of early spring survival of wheat leaf rust in the Central Great Plains. Plant Disease, 82, 987-991.

    Article  Google Scholar 

  • Falk, S. P., Gadoury, D. M., & Seem, R. C. 1995. Analysis of risk of primary apple scab infection. Phytopathology, 85, 1556.

    Article  Google Scholar 

  • Fidanza, M. A., Dernoeden, P. H., & Grybauskas, A. P. (1996). Development and field validation of a brown patch warning model for perennial ryegrass turf. Phytopathology, 86, 385-390.

    Article  Google Scholar 

  • Fitt, B. D. L., & McCartney, H. A. (1986). Spore dispersal in relation to epidemic models. In: K. J. Leonard & W. E. Fry (Eds.), Plant Disease Epidemiology. Population Dynamics and Management (Vol. I, pp. 311-345). New York, NY: MacMillian.

    Google Scholar 

  • Gadoury, D. M., & MacHardy, W. E. (1982). Effects of temperature on the development of pseudothecia of Venturia inaequalis. Plant Disease, 66, 464-468.

    Article  Google Scholar 

  • Gadoury, D. M., & MacHardy, W. E. (1986). Forecasting ascospore dose of Venturia inaequalis in commercial apple orchards. Phytopathology, 76, 112-118.

    Article  Google Scholar 

  • Gadoury, D. M., MacHardy, W. E., & Rosenberger, D. A. (1989). Integration of pesticide application schedules for disease and insect control in apple orchards of the north eastern United States. Plant Disease, 73, 98-105.

    Article  Google Scholar 

  • Gadoury, D. M., & Pearson, R. C. (1990). Ascocarp dehiscence and ascospore discharge in Uncinula necator. Phytopathology, 80, 393-401.

    Article  Google Scholar 

  • Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2001). The epidemiology of powdery mildew on Concord grapes. Phytopathology, 91, 948-955.

    Article  CAS  PubMed  Google Scholar 

  • Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93, 547-555.

    Article  PubMed  Google Scholar 

  • Gao, L. Z., Jin, Z. Q., Huang, Y., & Zhang, L. H. (1992). Rice clock model - a computer model to simulate rice development. Agricultural and Forest Meteorology, 60, 1-16.

    Article  Google Scholar 

  • Gleason, M. L., MacNab, A. A., Pitblado, R. E., Ricker, M. D., East, D. A., & Latin, R. X. (1995). Disease warning systems for processing tomatoes in eastern North America: are we there yet? Plant Disease, 79, 113-121.

    Article  Google Scholar 

  • Grove, G. G., Madden, L. V., Ellis, M. A., & Schmitthenner, A. F. (1985). Influence of temperature and wetness duration on infection of immature strawberry fruit by Phytophthora cactorum. Phytopathology, 75, 165-169.

    Article  Google Scholar 

  • Grunwald, N. J., Rubio Covarrubias, O. A., & Fry, W. E. (2000). Potato late-blight management in the Toluca Valley: forecasts and resistant cultivars. Plant Disease, 84, 410-416.

    Article  Google Scholar 

  • Hansen, J. G., Bodker, L., & Nielsen, B. J. (2000). Decision support for the control of potato late blight. DJF Rapport, Markbrug, 24, 87-99.

    Google Scholar 

  • Huber, L., & Gillespie, T. J. (1992). Modelling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553-577.

    Article  Google Scholar 

  • Isard, S. A., Russo, J. M., & DeWolf, E. D. (2006). The establishment of a National Pest Information Platform for extension and education. Plant Health Progress doi:10.1094/PHP-2006-0915-01-RV. Available at http://www.plantmanagementnetwork.org/php/search/search_action.asp

    Google Scholar 

  • Jedryczka, M., Matysiak, R., Bandurowski, R., & Rybacki, D. (2004). SPEC - the decision support system against stem canker of oilseed rape in Poland. Rosliny Oleiste, 25, 637-644.

    Google Scholar 

  • Jones, A. L. (1992). Evaluation of the computer model MARYBLYT for predicting fire blight blossom infection on apple in Michigan. Plant Disease, 76, 344-347.

    Article  Google Scholar 

  • Kim, K. S., Gleason, M. L., & Taylor, S. E. (2006). Forecasting site-specific leaf wetness duration for input to disease-warning systems. Plant Disease, 90, 650-656.

    Article  Google Scholar 

  • Krause, R. A., & Massie, L. B. (1975). Predictive systems: modern approaches to disease control. Annual Review of Phytopathology, 13, 31-47.

    Article  Google Scholar 

  • Luo, Y., & Michailides, T. J. (2001). Factors affecting latent infection of prune fruit by Monilinia fructicola. Phytopathology, 91, 864-872.

    Article  CAS  PubMed  Google Scholar 

  • MacHardy, W. E., & Gadoury, D. M. (1989). A revision of Mill’s criteria for predicting apple scab infection periods. Phytopathology, 79, 304-310.

    Article  Google Scholar 

  • Madden, L., Pennypacker, S. P., & MacNab, A. A. (1978). FAST, a forecast system for Alternaria solani on tomato. Phytopathology, 68, 1354-1358.

    Article  Google Scholar 

  • Madden, L. V., & Ellis, M. A. (1988). How to develop plant disease forecasters. In: J. Kranz & J. Rotem (Eds.), Experimental Techniques in Plant Disease Epidemiology. (pp. 191-208.). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Magarey, P. A., Wachtel, M. F., Weir, P. C., & Seem, R. C. (1991). A computer-based simulator for rational management of grapevine downy mildew (Plasmopara viticola Plasmopara viticola. Plant Protection Quarterly, 6, 29-33.

    Google Scholar 

  • Magarey, R. D., Seem, R. C., Russo, J. M., Zack, J. W., Waight, K. T., Travis, J. W., et al. (2001). Site-specific weather information without on-site sensors. Plant Disease, 85, 1216-1226.

    Article  Google Scholar 

  • Magarey, R. D., Seem, R. C., Weiss, A., Gillespie, T. J., & Huber, L. (2005a). Estimating surface wetness on plants. In M. K. Viney (Ed.), Micrometeorology in Agricultural Systemns. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Magarey, R. D., Seem, R. C., Weiss, A., Gillespie, T. J., & Huber, L. (2005b). Estimating surface wetness on plants. In: Hatfield, J. L., Baker, J. M. & Viney, M. K. (Eds.). Micrometeorology in Agricultural Systemns. Madison, WI: American Society of Agronomy, 199-226.

    Google Scholar 

  • Magarey, R. D., Sutton, T. B., & Thayer, C. L. (2005c). A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 95, 92-100.

    Article  CAS  Google Scholar 

  • Magarey, R. D., Travis, J. W., Russo, J. M., Seem, R. C., & Magarey, P. A. (2002). Decision support systems: quenching the thirst. Plant Disease, 86, 4-14.

    Article  Google Scholar 

  • Matyac, C. A., & Bailey, J. E. (1988). Modification of the peanut leaf spot advisory for use on genotypes with partial resistance. Phytopathology, 78, 640-644.

    Article  Google Scholar 

  • McDonald, C. (1997). Expert systems and the pest research literature. Agricultural Systems and Information Technology, 7, 22-24.

    Google Scholar 

  • Miller, P., Lanier, W., & Brandt, S. (2001). Using growing degree days to predict plant stages. MontGuide fact sheet MT200103 AG 7/2001: Montana State University Extensions Service.

    Google Scholar 

  • Miller, T. C., Gubler, W. D., Geng, S., & Rizzo, D. M. (2003). Effects of temperature and water vapor pressure on conidial germination and lesion expansion ofSphaerotheca macularis f. sp. fragariae. Plant Disease, 87, 484-492.

    Article  Google Scholar 

  • Mills, W. D. (1944). Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin, 630.

    Google Scholar 

  • Montesinos, E., & Vilardell, P. (1992). Evaluation of FAST as a forecasting system for scheduling fungicide sprays for control of Stemphylium vesicarium on pear. Plant Disease, 76, 1221-1226.

    Article  Google Scholar 

  • Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D., & Jones, E. (2007). A developmental database to support insect phenology models. Crop Protection in print.

    Google Scholar 

  • Novak, M. (2005). Soil temperature. In: Hatfield, J. L., Baker, J. M. & Viney, M. K. (Eds.), Micrometeorology in Agricultural Systems. Madison, WI: American Society of Agronomy, 105-130

    Google Scholar 

  • Oke, T. R. (1978). Boundary layer climates. Abingdon, UK: Routledge.

    Book  Google Scholar 

  • Pfender, W. F. (2003). Prediction of stem rust infection favorability, by means of degree-hour wetness duration, for perennial ryegrass seed crops. Phytopathology, 93, 467-477.

    Article  CAS  PubMed  Google Scholar 

  • Populer, C. (1978). Changes in host susceptibility with time. In J. G. Horsfall & E. B. Cowling (Eds.), Plant Disease. An Advanced Treatise. Vol II. How-Disease Develops in Populations. NY: Academic Press.

    Google Scholar 

  • Rotem, J. (1988). Techniques of controlled-condition experiments. In: J. Kranz & J. Rotem (Eds.), Experimental Techniques in Plant Disease Epidemiology (pp. 19-31). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Saunders, M. C., Travis, J. W., Miller, B. J., Muza, A. J., & Haeseler, C. W. (1991). Grapes: a frame-based expert system for viticulture in Pennsylvania, USA. Australian and New Zealand Wine Industry Journal, 6, 204-209.

    Google Scholar 

  • Seem, R. C., & Szkolnik, M. (1978). Phenological development of apple trees. In Phenology: An Aid to Agricultural Technology: Vermont Agricultural Experiment Station.

    Google Scholar 

  • Seem, R. C., & Russo, J. M. (1984). Simple decision aids for practical control of pests. Plant Disease, 68, 656-660.

    Google Scholar 

  • Seem, R. C., Magarey, R. D., Zack, J. W., & Russo, J. M. (2000). Estimating disease risk at the whole plant level with general circulation models. Environmental Pollution, 108, 389-395.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, D. A., Adaskaveg, J. E., & Ogawa, J. M. (1990). Influence of wetness period and temperature on infection and development of shot-hole disease of almond caused by Wilsonomyces carpophilus. Phytopathology, 80, 749-756.

    Article  Google Scholar 

  • Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87, 332-340.

    Article  CAS  PubMed  Google Scholar 

  • Shuman, J. L., & Christ, B. J. (2005). Integrating a host-resistance factor into the FAST system to forecast early blight of potato. American Journal of Potato Research, 82, 9-19.

    Article  Google Scholar 

  • Smith, F. D., & MacHardy, W. E. (1984). The retention and redistribution of captan on apple foliage. Phytopathology, 74, 894-899.

    Article  CAS  Google Scholar 

  • Spotts, R. A. (1977). Effect of leaf wetness duration and temperature on the infectivity of Guignardia bidwelliion grape leaves. Phytopathology, 67, 1378-1381.

    Article  Google Scholar 

  • Steiner, P. W. (1990). Predicting apple blossom infections by Erwinia amylovora using the MARYBLYT model. Acta Horticulturae, 273, 139-148.

    Google Scholar 

  • Stensvand, A., Gadoury, D. M., Amundsen, T., Semb, L., & Seem, R. C. (1997). Ascospore release and infection of apple leaves by conidia and ascospores of Venturia inaequalis at low temperatures. Phytopathology, 87, 1046-1053.

    Article  CAS  PubMed  Google Scholar 

  • Stensvand, A., Amundsen, T., Semb, L., Gadoury, D. M., & Seem, R. C. (1998). Discharge and dissemination of ascospores by Venturia inaequalis during dew. Plant Disease, 82, 761-764.

    Article  Google Scholar 

  • Stewart, T. M., Knight, J. D., Manktelow, D. W. L., & Mumford, J. D. (1998). SPRAYCHECK - a model for evaluating grower timing of black spot (Venturia inaequalis) fungicides in apple orchards. Crop Protection, 17, 65-74.

    Article  Google Scholar 

  • Subrahmanyam, P., & Smith, D. H. (1989). Influence of temperature, leaf wetness period, leaf maturity, and host genotype on web blotch of peanut. Oleagineux, 44, 27-31.

    Google Scholar 

  • Sutton, J. C., James, T. D. W., & Rowell, P. M. (1986). Botcast: a forecasting system to time the initial fungicide spray for managing Botrytis leaf blight of onions. Agriculture Ecosystem and Environment, 18, 123-144.

    Article  Google Scholar 

  • Togashi, K. (1949). Biological characters of plant pathogen temperature relations. Tokyo, Japan: Meibundo, 478 pp.

    Google Scholar 

  • Travis, J. W., & Latin, R. X. (1991). Development, implementation, and adoption of expert systems in plant pathology. Annual Review of Phytopathology, 29, 343-360.

    Article  Google Scholar 

  • USDA-APHIS. (2005). A Coordinated Framework for Soybean Rust Surveillance, Reporting, Prediction, Management and Outreach.

    Google Scholar 

  • Vincelli, P. C., & Lorbeer, J. W. (1989). BLIGHT-ALERT: a weather-based predictive system for timing fungicide applications on onion before infection periods of Botrytis squamosa. Phytopathology, 79, 493-498.

    Article  Google Scholar 

  • Waggoner, P. E. (1960). Forecasting Epidemics. In: Horsfall, J. G.. & Cowling, E. B. (Eds.). Plant Disease: An Advanced Treatise. (Vol. III). Academic Press, New York.

    Google Scholar 

  • Wang, E. L., & Engel, T. (1998). Simulation of phenological development of wheat crops. Agricultural Systems, 58, 1-24.

    Article  Google Scholar 

  • Weiss, A., Kerr, E. D., & Steadman, J. R. (1980). Temperature and moisture influences on development of white mold disease (Sclerotinia sclerotiorum) on Great Northern beans. Plant Disease, 64, 757-759.

    Article  Google Scholar 

  • Wilson, L. L., Madden, L. V., & Ellis, M. A. (1990). Influence of temperature and wetness duration on infection of immature and mature strawberry fruit by Colletotrichum acutatum. Phytopathology, 80, 111-116.

    Article  Google Scholar 

  • Windels, C. E., Lamey, H. A., Hilde, D., Widner, J., & Knudsen, T. (1998). A Cercospora leaf spot model for sugar beet: in practice by an industry. Plant Disease, 82, 716-726.

    Article  Google Scholar 

  • Workneh, F., Narasimhan, B., Srinivasan, R., & Rush, C. M. (2005). Potential of radar-estimated rainfall for plant disease risk forecast. Phytopathology, 95, 25-27.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Magarey, R., Suiter, K., & Stinner, R. (2007). Applications of information technology in IPM. In: A. Ciancio & K. G. Mukerji (eds.), General concepts in integrated pest and disease management (pp. 25-42). Springer-Verlag, NL.

    Google Scholar 

  • Yan, W., & Hunt, L. A. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84, 607-614.

    Article  Google Scholar 

  • Yin, X., Kropff, M. J., Mclaren, G., & Visperas, R. M. (1995). A non-linear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77, 1-16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Magarey, R.D., Sutton, T.B. (2007). How to Create and Deploy Infection Models for Plant Pathogens. In: Ciancio, A., Mukerji, K.G. (eds) General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6061-8_1

Download citation

Publish with us

Policies and ethics