Skip to main content

Rational for the Use of Opioids in Nociceptive Transmission

  • Chapter
Opioids in Medicine
  • 1985 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loeser, I.D., et al., Bonica’s Management of Pain, 2001, Philadelphia: Lippincott.

    Google Scholar 

  2. Craig, D.B., Postoperative recovery of pulmonary function. Anesth Analg, 1981, 60: pp. 46–52.

    PubMed  CAS  Google Scholar 

  3. Spence, A.A., Postoperative pulmonary complications in general anesthesia, T.C. Gray, J.F. Nunn, and J.E. Utting, Editors, 1980, Butterworth: London. pp. 591–608.

    Google Scholar 

  4. Bonica, J.J., Current status of postoperative pain therapy, in Current Topics in Pain Research and Therapy, T. Yokota and R. Dubner, Editors, 1983, Exerpta Medica: Tokyo. pp. 169–189.

    Google Scholar 

  5. Modig, J., Thromembolism and blood loss: continuous epidural vs. general anesthesia with vcontrolled ventilation. Reg Anesth, 1982, 7: pp. S84–S88.

    Google Scholar 

  6. Katz, J., B.P. Kavanagh, and A.N. Sandler, Preemptive analgesia: clinical evidence of neuroplasticity contributing to postoperative pain. Anesthesiology, 1992, 77: pp.439–446.

    Article  PubMed  CAS  Google Scholar 

  7. Wall, P.D., The prevention of postoperative pain. Pain, 1988, 33: pp. 289–290.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, F.L., Postsurgical pain relief: patients status and nurses’ medication. Pain, 1980, 9: pp. 265–274.

    Article  PubMed  CAS  Google Scholar 

  9. Angell, M., The quality of mercy. New Engl J Med, 1982, 306: pp. 98–99.

    Article  PubMed  CAS  Google Scholar 

  10. Marks, R.M. and E.J. Sachar, Undertreatment of medical inpatients with narcotic analgesics. Ann Int Med, 1973, 78: pp. 173–181.

    PubMed  CAS  Google Scholar 

  11. Jurna, I. and K. Brune, Central effect of the non-steroid anti-inflammatory agents, indometacin, ibuprofen, and diclofenac, determined in C fibre-evoked activity in single neurons of the rat thalamus. Pain, 1990, 41: pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  12. Apkarian, A.V., et al., Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci, 2004, 24: pp. 10410–10415.

    Article  PubMed  CAS  Google Scholar 

  13. Rexed, B., Some aspects of the cytoarchitectonics and synaptology of the spinal cord. Brain Res, 1964, 11: pp. 58–92.

    Article  CAS  Google Scholar 

  14. Wager, T.D., The neural bases of placebo effects in anticipation and pain. Semin Pain Med, 2005, 3: pp. 22–30.

    Article  Google Scholar 

  15. Melzack, R. and P.C. Wall, Pain mechanisms: a new theory. Science, 1965, 150: p. 971.

    Article  PubMed  CAS  Google Scholar 

  16. Kehlet, H., Surgical stress: the role of pain and analgesia. Br J Anaesth, 1989, 63: pp. 189–195.

    Article  PubMed  CAS  Google Scholar 

  17. Kehlet, H., The stress response to surgery: release mechanisms and the modifying effect of pain relief. Acta Chir Scand, 1989, 550 (suppl): pp. 22–28.

    CAS  Google Scholar 

  18. Scott, N.B. and H. Kehlet, Regional anaesthesia and surgical mobidity. Br J Surg, 1988, 75: pp. 299–304.

    PubMed  CAS  Google Scholar 

  19. Hassler, R., Wechselwirkungen zwischen dem System der schnellen Schmerzempfindung und dem des langsamen, nachhaltigen Schmerzgefühl. Arch Klin Chir, 1976, 342: p. 47.

    CAS  Google Scholar 

  20. Pert, P.B. and S.H. Snyder, Opiate receptor: demonstration in nervous tissue. Science, 1973, 179: pp. 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  21. McMahon, S. and M. Koltzenburg, Wall and Melzack‘s Textbook of Pain. 5th edition. 2005, Churchill: London Livingstone, 1280.

    Google Scholar 

  22. Ramachandran, V.S. and D. Rogers-Ramachandran, Synaesthesia in phantom limbs induced with mirrors. Proc R Soc Lond B Biol Sci, 1996, 263: pp. 377–386.

    Article  CAS  Google Scholar 

  23. Flor, H., Phantom limb pain: characteristics, causes and treatment. Lancet, 2002, 1: pp. 182–188.

    Article  Google Scholar 

  24. Hassler, R., über die antagonistischen Systeme der Schmerzempfindung und des Schmerzgefühls im peripheren und zentralen Nervensystem, In: Pentazocin im Spiegel de et Entwöhnung, S. Kubicki and G.A. Neuhaus, Editors, 1976, Springer: Berlin, Heidelberg, New York. pp. 1–17.

    Google Scholar 

  25. Basbaum, A.I. and H.L. Fields, Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci, 1984, 7: pp. 309–338.

    Article  PubMed  CAS  Google Scholar 

  26. Fields, K.L. and S.D. Anderson, Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation produced analgesia. Pain, 1978, 5: pp. 333–349.

    Article  PubMed  CAS  Google Scholar 

  27. Wiklund, L., et al., Autoradiographic and electrophysiological evidence for exicitatory amino acid transmission in the periaqueductal gray projection to nucleus raphe magnus in the rat. Neurosci Lett, 1988, 93: pp. 158–163.

    Article  PubMed  CAS  Google Scholar 

  28. Urban, M.O. and D.J. Smith, Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray. J Pharmacol Expt Therap, 1993, 265: pp. 580–586.

    CAS  Google Scholar 

  29. Melzack, R., Pain measurement and assessment. 1983, Raven: New York.

    Google Scholar 

  30. Tölle, T.R., et al., Effects of Ketalorphan and morphine before and after noxious stimulation on immediate-early gene expression in rat spinal cord neurons. Pain, 1994, 56: pp. 103–112.

    Article  PubMed  Google Scholar 

  31. Chandrasekharan, N.V., et al., COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci (USA), 2002, 99: pp. 13371–13373.

    Article  CAS  Google Scholar 

  32. Rady, J.J., W.B. Campbell, and J.M. Fujimoto, Antianalgesic action of nociceptin originating in the brain is mediated by spinal prostaglandin E2 in mice. J Pharmacol Exp Ther, 2001, 296: pp. 7–14.

    PubMed  CAS  Google Scholar 

  33. Lembo, P.M., Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci, 2002, 5: pp. 201–209.

    Article  PubMed  CAS  Google Scholar 

  34. Vrinten, D.H., et al., Chronic blockade of melanocortin receptors alleviates allodynia in rats with neuropathic pain. Anesth Analg, 2001, 93: pp. 1572–1577.

    Article  PubMed  CAS  Google Scholar 

  35. Kovelowski, C.J., et al., Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain, 2000, 87: pp. 265–273.

    Article  PubMed  CAS  Google Scholar 

  36. Vanderath, T.W., Chronic pain and the role of cholecystokinin. J Neurpath Pain Symtom Palliat, 2004, 1: pp. 89–95.

    Article  CAS  Google Scholar 

  37. Verheggen, R., K. Bumann, and A.J. Kaumann, BIBN4096BS is a potent competitive antagonist of the relaxant effects of alpha-CGRP on human temporal artery: comparison with CGRP(8–37). Br J Pharmacol, 2002, 136: pp. 120–126.

    Article  PubMed  CAS  Google Scholar 

  38. Xu, Z.-Q., et al., Evidence for galanin receptors in primary sensory neurones and effect of axotomy and inflammation. Neuroreport, 1996, 8: pp. 237–242.

    Article  PubMed  CAS  Google Scholar 

  39. Meller, S.T., et al., Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience, 1992, 50: pp. 7–10.

    Article  PubMed  CAS  Google Scholar 

  40. Meller, S.T. and G.F. Gebhardt, Nitric oxide (NO) and antinociceptive processing in the spinal cord. Pain, 1993, 52: pp. 127–136.

    Article  PubMed  CAS  Google Scholar 

  41. Przewlocki, R., H. Machelska, and B. Przewlocka, Inhibition of nitric oxide synthase enhances morphine antinociception in the rat spinal cord. Life Sci, 1993, 53: pp. 1–5.

    Article  Google Scholar 

  42. Kolesnikov, Y.A., et al., Blockade of tolerance to morphine but not to k opioids by a nitric oxide synthese inhibitor. Proc Natl Acad Sci USA, 1993, 90: pp. 5162–5166.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, H.X. and T. Hokfelt, The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci, 2002, 23: pp. 468–478.

    Article  PubMed  CAS  Google Scholar 

  44. Drew, L.J., et al., Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTPγS binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats. Eur J Neurosci, 2000, 12: p. 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  45. Sagar, D.R., et al., Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur J Neurosci, 2005, 22: pp. 371–379.

    Article  PubMed  Google Scholar 

  46. Griffin, G., et al., Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol, 1997, 339: pp. 53–61.

    Article  PubMed  CAS  Google Scholar 

  47. Herzberg, U., et al., The analgesic effects of R(+)-Win 55,212-2 mesylate, a high cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett, 1997, 221: pp. 157–160.

    Article  PubMed  CAS  Google Scholar 

  48. Chizh, B.A. and P. Illes, P2X receptors and nociception. Pharmacol Rev, 2001, 53: pp. 553–568.

    PubMed  CAS  Google Scholar 

  49. Burnstock, G. and M. Williams, P2 Purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Expt Ther, 2000, 295: pp. 862–869.

    CAS  Google Scholar 

  50. Di Marzo, V., J.R. Tippins, and H.R. Morris, Neuropeptides and inflammatory mediators: bidirectional regulatory mechanisms: Trends Pharmacol Sci, 1989, 10: pp. 91–92.

    Google Scholar 

  51. Mezey, E., et al., Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci (USA), 2000, 97: pp. 3655–3660.

    Article  CAS  Google Scholar 

  52. Hough, L.B., et al., Inhibition of improgan antinociception by the cannabinoid (CB)(1) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A): lack of obligatory role for endocannabinoids acting at CB(1) receptors. J Pharmacol Exp Ther, 2002, 303: pp. 314–322.

    Article  PubMed  CAS  Google Scholar 

  53. Dib-Hajj, S.D., et al., NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci (USA), 1998, 95: pp. 8963–8968.

    Article  CAS  Google Scholar 

  54. Kato, A., T. Ohkubo, and K. Kitamura, Algogen-speific pain processing in mouse spinal cord: differential constitution of voltage-dependent Ca2+ channels in synaptic transmission. Br J Pharmacol, 2002, 135: pp. 1336–1342.

    Article  PubMed  CAS  Google Scholar 

  55. Eglen, R.M., J.C. Hunter, and A. Dray, Ions in the fire: recent ion-channel research and approaches to pain therapy. TIPS, 1999, 20: pp. 337–342.

    PubMed  CAS  Google Scholar 

  56. Liu, H., P.W. Mantyhy, and A.I. Basbaum, NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature, 1997, 386: pp. 721–724.

    Article  PubMed  CAS  Google Scholar 

  57. Parsons, C.G., NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol, 2001, 429: pp. 71–78.

    Article  PubMed  CAS  Google Scholar 

  58. Williams, K., Mechanisms influencing stimulatory effects of spermine at recombinant N-methyl-D-aspartate receptors. Mol Pharmacol, 1994, 46: pp. 161–168.

    PubMed  CAS  Google Scholar 

  59. Dukat, M., et al., Epibatidine: a very high affinity nicotinic receptor ligand. Med Chem Res, 1994, 4: pp. 131–139.

    CAS  Google Scholar 

  60. Bannon, A.W., et al., Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science, 1998, 279:pp. 77–81.

    Article  PubMed  CAS  Google Scholar 

  61. Lynch, J.J., et al., ABT-594 (a nicotinic acetylcholine agonist): anti-allodynia in a rat chemotherapy-induced pain model. Eur J Pharmacol, 2005, 509: pp. 43–48.

    Article  PubMed  CAS  Google Scholar 

  62. Vrinten, D.H., et al., Neuropathic pain: a possible role for the melanocortin system? Eur J Pharmacol, 2001, 429: pp. 61–69.

    Article  PubMed  CAS  Google Scholar 

  63. Riccio, A., et al., An NGF-TrkA-Mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science, 1997, 277: pp. 1097–1100.

    Article  PubMed  CAS  Google Scholar 

  64. Caterina, M.J., et al., Impaired nociception and pain sensation in mice lacking the capscaicin receptor. Science, 2000, 288: pp. 306–311.

    Article  PubMed  CAS  Google Scholar 

  65. Chattipakorn, S.C., et al., The effect of fentanyl on c-fos expression on the trigeminal brainstem complex produced by pulpal heat stimulation in the ferret. Pain, 1999, 82: pp. 207–215.

    Article  PubMed  CAS  Google Scholar 

  66. Yaksh, T.L., Spinal opiate analgesics: Characteristics and principles of action. Anesthesiology, 1981, 11: pp. 293–346.

    CAS  Google Scholar 

  67. Goodman, R.R., et al., Differentiation of delta and mu opiate receptor localization by light microscopic autoradiography. Proc Natl Acad Sci (USA), 1980, 77: pp. 6239–6243.

    Article  CAS  Google Scholar 

  68. Yaksh, T.L., In vivo studies on the spinal opiate receptor systems mediating antinociception. I. mu and delta receptor profiles in the primate. J Pharmacol Exp Ther, 1983, 226: pp. 303–316.

    PubMed  CAS  Google Scholar 

  69. Woolf, C.J., Evidence for a central component of post-injury hypersensitivity. Nature, 1983, 306: pp. 686–688.

    Article  PubMed  CAS  Google Scholar 

  70. Coderre, T.J. and R. Melzack, Cutaneous hyperalgesia: contribution of the peripheral and central nervous system to the increase in pain sensitivity after injury. Brain Res, 1987 (404): pp. 95–106.

    Article  PubMed  CAS  Google Scholar 

  71. Cook, A.J., et al., Dynamic receptive field plasticity in the rat spinal cord dorsal horn following C-primary afferent input. Nature, 1987, 325: pp. 151–153.

    Article  PubMed  CAS  Google Scholar 

  72. Lombard, M.C. and J.M. Besson, Attempts to gauge the relative importance of pre-and postoperative effects of morphine on the transmission of noxious messages in the dorsal horn of the rat spinal cord. Pain, 1989, 37: pp. 335–345.

    Article  PubMed  CAS  Google Scholar 

  73. Yaksh, T., Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. TIPS, 1999, 20: pp. 329–337.

    PubMed  CAS  Google Scholar 

  74. Davies, S.N. and D. Lodge, Evidence for involvement of N-methylaspertate receptors in “wind-up” of class 2 neurone in the dorsal horn of the rat. Brain Res, 1987, 424: pp. 402–406.

    Article  PubMed  CAS  Google Scholar 

  75. Ebersberger, A., et al., Morphine, 5-HT2 and 5-HT3 receptor antagonists reduce c-fos expression in the trigeminal nuclear complex following noxious chemical stmulation of the rat nasal mucosa. Brain Res, 1995, 676: pp. 336–342.

    Article  PubMed  CAS  Google Scholar 

  76. Kayser, V., et al., Potent antinociceptive effects of kelatorphan, a highly efficient inhibitor of multiple enkaphalin-degrading enzymes, systemically administered in normal and arthritic rats. Brain Res, 1989, 497: pp. 94–101.

    Article  PubMed  CAS  Google Scholar 

  77. Hammond, D.L., et al., Morphine or U-50,488H suppresses fos proteine-like immunoreactivity in the spinal cord and the nucleus tractus solitarii evoked by noxious visceral stimulus in the rat. J Comp Neurol, 1992, 315: pp. 244–253.

    Article  PubMed  CAS  Google Scholar 

  78. Higuchi, T., et al., Effects of carbamazepine and valporic acid on brain immunoreactvce somatostatin and gamma-aminobutyric acid in amygdaloid-kindled rats. Eur J Pharmacol, 1986, 125: pp. 169–175.

    Article  PubMed  CAS  Google Scholar 

  79. Tölle, T.R., et al., Anticonvulsants suppress c-fos protein expression in spinal cord neurons following noxious thermal stimulation. Expt Neurol, 1996, 132: pp. 271–278.

    Article  Google Scholar 

  80. Sawynok, J. and F.S. La Bella, On the involvement of GABA in the analgesia produced by baclofen, muscimol and morphine. Neuropharmacology, 1982, 21: pp. 397–404.

    Article  PubMed  CAS  Google Scholar 

  81. Castro-Lopes, J.M., et al., Expression of GRAD mRNA in spinal cord neurons of normal and monoarthritic rats. Mol Brain Res, 1994, 26: pp. 169–176.

    Article  PubMed  CAS  Google Scholar 

  82. Hammond, D.L. and E.J. Drowner, Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol, 1984, 103: pp. 121–125.

    Article  PubMed  CAS  Google Scholar 

  83. Hao, J.X., et al., Baclofen reverses the hypersensitivity of dorsal horn dynamic range neurons to mechanical stimulation after transient spinal cord ischemia: implication for a tonic GABAergic inhibitory control of myelinated fiber input. J Neurophysiol, 1992, 68: pp. 392–396.

    PubMed  CAS  Google Scholar 

  84. Aigouy, I., et al., Intrathecal midazolam versus intrathecal morphine in orofacial nociception – an experimental study in rats. Neurosci Lett, 1992, 139: pp. 97–99.

    Article  PubMed  CAS  Google Scholar 

  85. Linderoth, B. and R.D. Foreman, Physiology of spinal cord stimulation: review and update. Neuromodulation, 1999, 2: pp. 150–164.

    Article  Google Scholar 

  86. Guilbaud, G., et al., Primary somatosensory cortex in rats with pain-related behaviors due to peripheral mononeuropathy after moderate ligation of one sciatic nerve: neuronal responsivity to somatic stimulation. Exp Brain Res, 1992, 92: pp. 227–245.

    Article  PubMed  CAS  Google Scholar 

  87. Jensen, T.S. and T.L. Yaksh, Brainstem excitatory amino acid receptors in nociception: mircroinjection mapping and pharmacological chraracterization of glutamate-sensitive sites in brainstem associated with algogenic behavior. Neuroscience, 1992, 442: pp. 513–526.

    Google Scholar 

  88. Mc Kenzie, J.S. and N.R. Beechy, The effects of morphine and pethidine on somatic evoked responses in the midbrain of the cat, and their relevance to analgesia. Electroenceph Clin Neurophysiol, 1962, 14: pp. 501–519.

    Article  Google Scholar 

  89. Hong, J.S., et al., Determination of methionine enkephalin in discrete regions of rat brain. Brain Res, 1977, 134: pp. 383.

    Article  PubMed  CAS  Google Scholar 

  90. Simantov, R., A.M. Snowman, and S.H. Snyder, A morphine-like factor “enkephalin” in rat brain: subcellular localization. Brain Res, 1976, 107: pp. 650–655.

    Article  PubMed  CAS  Google Scholar 

  91. Wall, P.D. and C.J. Woolf, The brief and prolonged facilatory effect of unmyelinated afferent input on the rat spinal cord are independently influenced by peripheral nerve section. Neuroscience, 1986, 17: pp. 1199–11205.

    Article  PubMed  CAS  Google Scholar 

  92. Woolf, C.J. and R.J. Mannion, Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet, 1999, 353: pp. 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  93. Portenoy, R.K. and K.M. Foley, Chronic use of opioid analgesics in non-malignant pain: report of 38 cases. Pain, 1986, 25: pp. 171–186.

    Google Scholar 

  94. Passik, S.D., R.K. Portenoy, and S.L. Ricketts, Substance abuse issues in cancer patients. Oncology, 1998, 12: pp. 517–521.

    PubMed  CAS  Google Scholar 

  95. Zimmermann, M. and H.O. Handwerker, Schmerz, Konzepte und ärztliches Handeln, 1984, Berlin, Heidelberg, New York, Springer: Tokyo.

    Google Scholar 

  96. Eglen, R.M., J.C. Hunter, and A. Dray, Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharmacol Sci, 1999, 20: pp. 337–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Freye, E., Levy, J.V. (2008). Rational for the Use of Opioids in Nociceptive Transmission. In: Opioids in Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5947-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5947-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5946-9

  • Online ISBN: 978-1-4020-5947-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics