Skip to main content

Sulfur in biotic interactions of plants

  • Chapter
Sulfur in Plants An Ecological Perspective

Part of the book series: Plant Ecophysiology ((KLEC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1: 125-129

    CAS  PubMed  Google Scholar 

  • Apel K, Bohlmann H, Reimann-Philipp U (1990) Leaf thionins, a novel class of putative defence factors. Physiol Plant 80: 315-321

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601-639

    CAS  PubMed  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448-2462

    CAS  PubMed  Google Scholar 

  • Blake-Kalff MM, Harrison KR, Hawkesford MJ, Zhao FJ, McGrath SP (1998) Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol 118: 1337-1344

    CAS  PubMed  Google Scholar 

  • Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I, Haneklaus S, Schnug E (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J Exp Bot 55: 2305-2312

    CAS  PubMed  Google Scholar 

  • Bohlmann H, Apel K (1991) Thionins. Annu Rev Plant Physiol Plant Mol Biol 42: 227-240

    CAS  Google Scholar 

  • Bohlmann H, Vignutelli A, Hilpert B, Miersch O, Wasternack C, Apel K (1998) Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett 437: 281-286

    CAS  PubMed  Google Scholar 

  • Bohman S, Staal J, Thomma BP, Wang M, Dixelius C (2004) Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signaling. Plant J 37: 9-20

    CAS  PubMed  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53: 1367-1376

    CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97: 194-208

    CAS  Google Scholar 

  • Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108: 1353-1358

    CAS  PubMed  Google Scholar 

  • Brown P, Tokuhisa J, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62: 471-481

    CAS  PubMed  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The Fungi. Academic Press, London

    Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, Lopez-Fando JJ, Garcia-Olmedo F (1993) Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3: 457-462

    CAS  PubMed  Google Scholar 

  • Chandra S, Martin GB, Low PS (1996) The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc Natl Acad Sci USA 93: 13393-13397

    CAS  PubMed  Google Scholar 

  • Collins N, Thordal-Christens H, Lipka V, Bau S, Kombrink E, Qiu J, Huckelhoven R, Stein M, Freialdenhoven A, Somerville S, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973-977

    CAS  PubMed  Google Scholar 

  • Cooper C, Patel R, Brookes P, Darley-Usmar V (2002) Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci 27: 489-492

    CAS  PubMed  Google Scholar 

  • Cooper RM, Resende MLV, Flood J, Rowan MG, Beale MH, Potter U (1996) Detection and cellular localization of elemental sulphur in disease resistant genotypes of Theobroma cacao. Nature 379: 159-162

    CAS  Google Scholar 

  • Cooper RM, Williams JS (2004) Elemental sulphur as an induced antifungal substance in plant defence. J Exp Bot 55: 1947-1953

    CAS  PubMed  Google Scholar 

  • Da Silva Conceicao A, Broekaert W (1999) Plant Defensins. In Datta S, Muthukrishnan S, (ed.), Pathogenesis-Related Proteins in Plants. CRC Press, London, pp 247-260

    Google Scholar 

  • Dämmgen U, Walker K, Grünhage L, Jäger H-J (1998) The atmospheric sulfur cycle. In: Schnug E (ed), Sulphur in Agroecosystems, Vol. 2. Kluwer Academic, Dordrecht, The Netherlands, pp 75-114

    Google Scholar 

  • Dangl J, Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833

    CAS  PubMed  Google Scholar 

  • De Bolle M, Osborn R, Goderis I, Noe L, Acland D, Hart C, Torrekens S, Van Leuven F, Broekaert W (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31: 993-1008

    CAS  PubMed  Google Scholar 

  • Ebrahim-Nesbat F, Behnke S, Kleinhofs A, Apel K (1989) Cultivar-related differences in the distribution of cell-wall-bound thionins in compatible and incompatible interactions between barley and powdery mildew. Planta 179: 203-210

    CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109: 813-820

    CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9: 509-520

    CAS  PubMed  Google Scholar 

  • Epple P, Mack AA, Morris VRF, Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plantspecific zinc finger proteins. Proc Natl Acad Sci USA 100: 6831-6836

    CAS  PubMed  Google Scholar 

  • Ferrari S, Plotnikova J, De Lorenzo G, Ausubel F (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35: 193-205

    CAS  PubMed  Google Scholar 

  • Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8: 29-54

    Google Scholar 

  • Flor HH (1971) The current status of gene-for-gene concept. Annu Rev Phytopathol 9: 275-296

    Google Scholar 

  • Florack DE, Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26: 25-37

    CAS  PubMed  Google Scholar 

  • Fryer M, Ball L, Oxborough K, Karpinski S, Mullineaux P, Baker N (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33: 691-705

    CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J Exp Bot 53: 1249-1254

    CAS  PubMed  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47: 479-491

    CAS  PubMed  Google Scholar 

  • Giovannucci E, Rimm E, Liu Y, Stampfer M, Willett W (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 12: 1403-1409

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205-227

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang H, Nawrath C, Metraux J, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34: 217-228

    CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124: 21-30

    CAS  PubMed  Google Scholar 

  • Grubb C, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11: 89-100

    CAS  PubMed  Google Scholar 

  • Halkier B, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57: 303-333

    CAS  PubMed  Google Scholar 

  • Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281: 6884-6888

    PubMed  Google Scholar 

  • Hell R, Kruse C, Jost R, Lipschis M (2005) Molecular analysis of sulfur-based defense reactions in plantpathogen interactions. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Backhuys, Leiden, The Netherlands, pp 209-216

    Google Scholar 

  • Holub EB (2006) Evolution of parasitic symbioses between plants and filamentous microorganisms. Curr Opin Plant Biol 9: 397-405

    CAS  PubMed  Google Scholar 

  • Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9: 371-375

    CAS  PubMed  Google Scholar 

  • Hughes P, Dennis E, Whitecross M, Llewellyn D, Gage P (2000) The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem 275: 823-827

    CAS  PubMed  Google Scholar 

  • Imai S, Tsuge N, Tomotake M, Nagatome Y, Sawada H, Nagata T, Kumagai H (2002) Plant biochemistry: an onion enzyme that makes the eyes water. Nature 419: 685

    CAS  PubMed  Google Scholar 

  • Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA (2004) Biosynthesis of the flavour precursors of onion and garlic. J Exp Bot 55: 1903-1918

    PubMed  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hähnel U, Hänsch R, Hartmann T, Kopriva S, Kruse C, Mendel R, Papenbrock J, Reichelt M, Rennenberg H, Schnug E, Schmidt A, Textor S, Tokuhisa J, Wachter A, Wirtz M, Rausch T, Hell R (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86: 491-508

    CAS  PubMed  Google Scholar 

  • Jost R, Scholze P, Hell R (2003) New approaches to study “sulfur-induced resistance” against fungal pathogens in Arabidopsis thaliana. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Renneberg H (eds), Sulfur Transport and Assimilation in Plants. Backhuys, Leiden, The Netherlands, pp 247-249

    Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105: 809-814

    CAS  PubMed  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640

    CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654-657

    CAS  PubMed  Google Scholar 

  • Keller B, Feuillet C, Messmer M (2000) Genetics of disease resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds), Mechanisms of Resistance to Plant Diseases. Kluwer Academic, Dordrecht, The Netherlands, pp 101-160

    Google Scholar 

  • Klikocka H, Haneklaus S, Bloem E, Schnug E (2005) Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani. J Plant Nutr 28: 819-833

    CAS  Google Scholar 

  • Kruse C, Jost R, Hillebrand H, Hell R (2005a) Sulfur-rich proteins and their agrobiotechnological potential for resistance to plant pathogens. FAL Agricult Res 283: 73-80

    CAS  Google Scholar 

  • Kruse C, Kopp B, Hartmann M, Jost R, Hell R (2005b) Sulfate-based performance of Arabidosis thaliana in response to pathogen infection. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Backhuys, Leiden, The Netherlands, pp 217-220

    Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13: 2793-2807

    CAS  PubMed  Google Scholar 

  • Lancaster J, Kelly K (1983) Quantitative analysis of the S-alk(en)yl-L-cysteine sulphoxides in onion (Allium cepa L.). J Sci Food Agric 34: 1229-1235

    CAS  Google Scholar 

  • Lancaster JE, Shaw ML (1991) Metabolism of γ-glutamylpeptides during development, storage and sprouting in onion bulbs. Phytochemistry 30: 2857-2859

    CAS  Google Scholar 

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141-165

    CAS  PubMed  Google Scholar 

  • Mansfield JW (2000) Antimicrobial compounds and resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds), Mechanisms of Resistance to Plant Diseases. Kluwer Academic, Dordrecht, The Netherlands, pp 325-370

    Google Scholar 

  • Matile P (1980) ‘Die Senfölbombe’: Zur Kompartimentierung des Myrosinasesystems. Biochem Physiol Pflanz 175: 722-731

    CAS  Google Scholar 

  • May MJ, Parker JE, Daniels MJ, Leaver CJ, Cobbett CS (1996) An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Mol Plant Microbe Interact 9: 349-356

    CAS  Google Scholar 

  • May M, Vernoux T, Leaver CJ, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649-667

    CAS  Google Scholar 

  • Meinhard M, Rodriguez P, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta 214: 775-782

    CAS  PubMed  Google Scholar 

  • Menard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin J-C, Kauffmann S (2004) β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16: 3020-3032

    CAS  PubMed  Google Scholar 

  • Meyer A, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86: 435-457

    CAS  PubMed  Google Scholar 

  • Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, Francois IEJA, Cammue BPA, Lebrun M, Berthomieu P, Marques L (2006) A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J 47: 329-342

    CAS  PubMed  Google Scholar 

  • Moerschbacher B, Mendgen K (2001) Structural aspects of defense. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds), Mechanisms of Resistance to Plant Diseases. Kluwer Academic, Dordrecht, The Netherlands, pp 231-277

    Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944

    CAS  PubMed  Google Scholar 

  • Nock LP, Mazelis M (1987) The C-S lyases of higher plants. Direct comparison of the physical properties of homogenous alliin lyase of garlic (Allium sativum) and onion (Allium cepa). Plant Physiol 85: 1079-1183

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279

    CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53: 1283-1304

    CAS  PubMed  Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320-2332

    CAS  PubMed  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8: 1821-1831

    CAS  PubMed  Google Scholar 

  • Pontoppidan B, Ekbom B, Eriksson S, Meijer J (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a Brassica herbivore. Eur J Biochem 268: 1041-1048

    CAS  PubMed  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99: 11223-11228

    CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10: 503-509

    CAS  PubMed  Google Scholar 

  • Reichelt M, Brown P, Schneider B, Oldham N, Stauber E, Tokuhisa J, Kliebenstein D, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663-671

    CAS  PubMed  Google Scholar 

  • Reimann-Philipp U, Schrader G, Martinoia E, Barkholt V, Apel K (1989) Intracellular thionins of barley. A second group of leaf thionins closely related to but distinct from cell wall-bound thionins. J Biol Chem 264: 8978-8984

    CAS  PubMed  Google Scholar 

  • Rennenberg H, Brunold C (1994) Significance of glutathione metabolism in plants under stress. Progr Bot 55: 143-156

    Google Scholar 

  • Riemenschneider A, Riedel K, Hoefgen R, Papenbrock J, Hesse H (2005) Impact of reduced O-acetylserine(thiol) lyase isoform contents on potato plant metabolism. Plant Physiol 137: 892-900

    CAS  PubMed  Google Scholar 

  • Rosenthal GA (1992) Nonprotein amino acids in the life of processes of higher plants. In: Singh BK, Flores HE, Shannon JC (eds), Biosynthesis and Molecular Regulation of Amino Acids in Plants. American Society of Plant Physiology, Rockville, pp 249-261

    Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3: 188-195

    CAS  PubMed  Google Scholar 

  • Salac I (2005) Influence of the sulfur and nitrogen supply on S metabolites involved in Sulphur Induced Resistance (SIR) of Brassica napus L. FAL Agric Res 277

    Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K-I, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44: 653-668

    CAS  PubMed  Google Scholar 

  • Schafer F, Buettner G (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191-1212

    CAS  PubMed  Google Scholar 

  • Schnug E, Haneklaus S, Booth E, Walker KC (1995) Sulphur supply and stress resistance in oilseed rape. In: 9th International. Rapeseed Congress, Vol. 1. Cambridge, pp 229-231

    Google Scholar 

  • Schreiner M (2005) Vegetable crop management strategies to increase the quantity of phytochemicals. Eur J Nutr 44: 85-94

    CAS  PubMed  Google Scholar 

  • Schröder P (1993) Plants as sources of atmospheric sulfur. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds), Sulfur Nutrition and Assimilation in Higher Plants. SPB Academic, Den Haag, pp 253-270

    Google Scholar 

  • Senda K, Ogawa K (2004) Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant Cell Physiol 45: 1578-1585

    CAS  PubMed  Google Scholar 

  • Städler E (2000) Secondary sulfur metabolites influencing herbivorous insects. In: Brunold C, Rennenberg H, De Kok L, Stulen I, Davidian J (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants. P Haupt, Bern, pp 187-202

    Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65: 5451-5458

    CAS  PubMed  Google Scholar 

  • Thomma B, Broekaert W (1998) Tissue-specific expression of plant defenin genes PDF1.2 and PDF2.2 in Arabidopsis thaliana. Plant Physiol Biochem 36: 533-537

    CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylatedependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95: 15107-15111

    CAS  PubMed  Google Scholar 

  • Thomma B, Nelissen I, Eggermont K, Broekaert W (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19: 163-171

    CAS  PubMed  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216: 193-202

    CAS  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123: 1289-1300

    CAS  PubMed  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6: 1191-1192

    CAS  PubMed  Google Scholar 

  • Wallsgrove RM, Doughty K, Bennett RN (1999) Glucosinolates. In: Singh BK (ed.), Plant Amino Acids. Marcel Dekker, New York, pp 523-561

    Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol. Biochem 39: 425-432

    CAS  Google Scholar 

  • Williams JS, Cooper RM (2003) Elemental sulphur is produced by diverse families as a component of defence against fungal and bacterial pathogens. Physiol Mol Plant Pathol 63: 3-16

    CAS  Google Scholar 

  • Williams JS, Cooper RM (2004) The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol 53: 263-279

    CAS  Google Scholar 

  • Williams JS, Hall SA, Hawkesford MJ, Beale MH, Cooper RM (2002) Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol 128: 150-159

    CAS  PubMed  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-acetylserine(thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55: 1785-1798

    CAS  PubMed  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101: 4859-4864

    CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7: 263-270

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hell, R., Kruse, C. (2007). Sulfur in biotic interactions of plants. In: Hawkesford, M.J., De Kok, L.J. (eds) Sulfur in Plants An Ecological Perspective. Plant Ecophysiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5887-5_9

Download citation

Publish with us

Policies and ethics