Skip to main content

Cell Cycle Regulation

  • Chapter
Metastasis of Prostate Cancer

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 10))

  • 674 Accesses

Abstract

Progression of the cell cycle is a tightly controlled process that is governed by several overlapping regulatory mechanisms. However, during the onset of prostate cancer and progression to malignancy, these stringent controls are cast aside and cell proliferation continues unchecked. Among the factors shown to contribute to aberrant cell proliferation and progression to malignancy in prostatic carcinoma are those that directly influence the cell cycle, such as androgen receptor and CDK inhibitors, as well as others that indirectly influence cell cycle control such as PTEN and polyamines. Here we discuss the mechanisms by which these factors manipulate the cell cycle and their contributions to the progression of prostate carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landis SH et al. Cancer statistics. CA Cancer J Clin 1999, 49:8–31, 1.

    Article  PubMed  CAS  Google Scholar 

  2. Schmid HP, McNeal JE, Stamey, TA. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 1993, 71:2031–40.

    Article  PubMed  CAS  Google Scholar 

  3. Schmid HP, McNeal JE, Stamey, TA. Clinical observations on the doubling time of prostate cancer. Eur Urol 1993, 23(Suppl 2):60–3.

    PubMed  Google Scholar 

  4. Green DR, Evan, GI. A matter of life and death. Cancer Cell 2002, 1:19–30.

    Article  PubMed  CAS  Google Scholar 

  5. Malumbres M, Barbacid, M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 2001, 1:222–231.

    Article  PubMed  CAS  Google Scholar 

  6. Evan GI, Vousden, KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411:342–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg, RA. The hallmarks of cancer. Cell 2000, 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Malumbres M, Barbacid, M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 2001, 1:222–31.

    Article  PubMed  CAS  Google Scholar 

  9. Culig Z et al. Androgen receptor–an update of mechanisms of action in prostate cancer. Urol Res 2000, 28:211–9.

    Article  PubMed  CAS  Google Scholar 

  10. Culig Z et al. Expression and function of androgen receptor in carcinoma of the prostate. Microsc Res Tech 2000, 51:447–55.

    Article  PubMed  CAS  Google Scholar 

  11. Pratt WB, Toft, DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997, 18:306–60.

    Article  PubMed  CAS  Google Scholar 

  12. Ohara-Nemoto Y et al. Characterization of the nontransformed and transformed androgen receptor and heat shock protein 90 with high-performance hydrophobic- interaction chromatography. J Steroid Biochem 1988, 31:295–304.

    Article  PubMed  CAS  Google Scholar 

  13. Pettaway CA. Prognostic markers in clinically localized prostate cancer. Tech Urol 1998, 4:35–42.

    PubMed  CAS  Google Scholar 

  14. Cleutjens KB et al. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 1996, 271(11):6379–88.

    Article  PubMed  CAS  Google Scholar 

  15. Jenster G, Coactivators, corepressors as mediators of nuclear receptor function: An update. Mol Cell Endocrinol 1998, 143:1–7.

    Article  PubMed  CAS  Google Scholar 

  16. Collingwood TN, Urnov FD, Wolffe, AP. Nuclear receptors: Coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 1999, 23:255–75.

    Article  PubMed  CAS  Google Scholar 

  17. Bevan C, Parker, M. The role of coactivators in steroid hormone action. Exp Cell Res 1999, 253:349–56.

    Article  PubMed  CAS  Google Scholar 

  18. Knudsen KE, Cavenee WK, Arden, KC. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 1999, 59:2297–301.

    PubMed  CAS  Google Scholar 

  19. Petre CE et al. Cyclin D1: Mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 2002, 277:2207–15.

    Article  PubMed  CAS  Google Scholar 

  20. Knudsen KE, Arden KC, Cavenee, WK. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 1998, 273:20213–22.

    Article  PubMed  CAS  Google Scholar 

  21. Lukas J et al. Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 1994, 9:707–18.

    PubMed  CAS  Google Scholar 

  22. Sherr CJ. Cancer cell cycles. Science 1996, 274:1672–7.

    Article  PubMed  CAS  Google Scholar 

  23. Philipp-Staheli J, Payne SR, Kemp, CJ. P27(KIP1): Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 2001, 264:148–68.

    Article  PubMed  CAS  Google Scholar 

  24. Takeuchi S et al. Allelotype analysis of childhood acute lymphoblastic leukemia. Cancer Res 1995, 55:5377–82.

    PubMed  CAS  Google Scholar 

  25. Hatta Y et al. Ovarian cancer has frequent loss of heterozygosity at chromosome 12P12.3-13.1 (Region of TEL and KIP1 loci) and chromosome 12Q23-ter: Evidence for two new tumour-suppressor genes. Br J Cancer 1997, 75:1256–62.

    PubMed  CAS  Google Scholar 

  26. Kibel AS et al. Deletion mapping at 12P12-13 in metastatic prostate cancer. Genes Chromosomes Cancer 1999, 25:270–6.

    Article  PubMed  CAS  Google Scholar 

  27. Slingerland J, Pagano, M. Regulation of the cdk inhibitor P27 and its deregulation in cancer. J Cell Physiol 2000, 183:10–7.

    Article  PubMed  CAS  Google Scholar 

  28. Coats S et al. Requirement of P27KIP1 for restriction point control of the fibroblast cell cycle. Science 1996, 272:877–80.

    Article  PubMed  CAS  Google Scholar 

  29. Guo Y et al. Loss of the cyclin-dependent kinase inhibitor P27(KIP1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 1997, 3: 2269–74.

    PubMed  CAS  Google Scholar 

  30. Cheville JC et al. Expression of P27KIP1 in prostatic adenocarcinoma. Mod Pathol 1998, 11:324–8.

    PubMed  CAS  Google Scholar 

  31. Yang RM et al. Low P27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 1998, 159:941–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tsihlias J, Kapusta L, Slingerland, J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 1999, 50:401–23.

    Article  PubMed  CAS  Google Scholar 

  33. Cordon-Cardo C et al. Distinct altered patterns of P27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 1998, 90:1284–91.

    Article  PubMed  CAS  Google Scholar 

  34. Cote RJ et al. Association of P27KIP1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 1998, 90:916–20.

    Article  PubMed  CAS  Google Scholar 

  35. De Marzo AM et al. Prostate stem cell compartments: Expression of the cell cycle inhibitor P27KIP1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998, 153:911–9.

    PubMed  Google Scholar 

  36. Huang S, Chen CS, Ingber, DE. Control of cyclin D1, P27(KIP1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 1998, 9:3179–93.

    PubMed  CAS  Google Scholar 

  37. St Croix B et al. E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor P27(KIP1). J Cell Biol 1998, 142:557–71.

    Article  PubMed  CAS  Google Scholar 

  38. Levenberg S et al. P27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 1999, 18:869–76.

    Article  PubMed  CAS  Google Scholar 

  39. Lifuang L, Schulz H, Wolf, DA. The F-box protein SKP2 mediated androgen control of P27 stability in LNCaP human prostate cancer cells. BCM Cell Biol 2002, 3:22.

    Google Scholar 

  40. Liggett WH Jr, Sidransky, D. Role of the P16 tumor suppressor gene in cancer. J Clin Oncol 1998, 16:1197–206.

    PubMed  CAS  Google Scholar 

  41. Jen J et al. Deletion of P16 and P15 genes in brain tumors. Cancer Res 1994, 54:6353–8.

    PubMed  CAS  Google Scholar 

  42. Kamb A et al. Analysis of the P16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994, 8:23–6.

    Article  PubMed  CAS  Google Scholar 

  43. Nobori T et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994, 368:753–6.

    Article  PubMed  CAS  Google Scholar 

  44. Jarrard DF et al. Deletional, mutational, and methylation analyses of CDKN2 (P16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 1997, 19:90–6.

    Article  PubMed  CAS  Google Scholar 

  45. Steiner MS et al. Adenoviral vector containing wild-type P16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence. Cancer Gene Ther 2000, 7:360–72.

    Article  PubMed  CAS  Google Scholar 

  46. Steiner MS et al. P16/MTS1/INK4A suppresses prostate cancer by both pRb dependent and independent pathways. Oncogene 2000, 19:1297–306.

    Article  PubMed  CAS  Google Scholar 

  47. McMenamin ME et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high gleason score and advanced stage. Cancer Res 1999, 59:4291–6.

    PubMed  CAS  Google Scholar 

  48. Suzuki H et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998, 58:204–9.

    PubMed  CAS  Google Scholar 

  49. Wu X et al. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/akt pathway. Proc Natl Acad Sci USA 1998, 95:15587–91.

    Article  PubMed  CAS  Google Scholar 

  50. Dong JT et al. PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 1998, 17:1979–82.

    Article  PubMed  CAS  Google Scholar 

  51. Pesche S et al. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 1998, 16:2879–83.

    Article  PubMed  CAS  Google Scholar 

  52. Vlietstra RJ et al. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 1998, 58:2720–3.

    PubMed  CAS  Google Scholar 

  53. Cairns P et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997, 57:4997–5000.

    PubMed  CAS  Google Scholar 

  54. Cheney IW et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res 1998, 58:2331–4.

    PubMed  CAS  Google Scholar 

  55. Furnari FB et al. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 1997, 94:12479–84.

    Article  PubMed  CAS  Google Scholar 

  56. Davies MA et al. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 2002, 8:1904–14.

    PubMed  CAS  Google Scholar 

  57. Koritschoner NP et al. A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem 1997, 272:9573–80.

    Article  PubMed  CAS  Google Scholar 

  58. Ratziu V et al. ZF9, a kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA 1998, 95:9500–5.

    Article  PubMed  CAS  Google Scholar 

  59. Suzuki T et al. Isolation and initial characterization of GBF, a novel DNA-binding zinc finger protein that binds to the GC-rich binding sites of the HIV-1 promoter. J Biochem (Tokyo) 1998, 124:389–95.

    CAS  Google Scholar 

  60. Narla G et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 2001, 294:2563–6.

    Article  PubMed  CAS  Google Scholar 

  61. Kim Y et al. Transcriptional activation of transforming growth factor beta1 and its receptors by the kruppel-like factor ZF9/core promoter-binding protein and SP1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 1998, 273:33750–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kojima S et al. Transcriptional activation of urokinase by the kruppel-like factor ZF9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 2000, 95:1309–16.

    PubMed  CAS  Google Scholar 

  63. Rossi MC, Zetter, BR. Selective stimulation of prostatic carcinoma cell proliferation by transferrin. Proc Natl Acad Sci USA 1992, 89:6197–6201.

    Article  PubMed  CAS  Google Scholar 

  64. Smith RC et al. Identification of an endogenous inhibitor of prostatic carcinoma cell growth. Nat Med 1995, 1:1040–1045.

    Article  PubMed  CAS  Google Scholar 

  65. Heston WDW. Prostatic polyamines, polyamine targeting as a new approach to therapy of prostatic cancer. Cancer. Surv 1991, 11:217–238.

    PubMed  CAS  Google Scholar 

  66. Coffino P. Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2001, 2:188–94.

    Article  PubMed  CAS  Google Scholar 

  67. Matsufuji S et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 1995, 80:51–60.

    Article  PubMed  CAS  Google Scholar 

  68. Laitinen J et al. Polyamines MAY regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle. J Cell Biochem 1998, 68:200–12.

    Article  PubMed  CAS  Google Scholar 

  69. Facchiano F et al. Transglutaminase activity is involved in polyamine-induced programmed cell death. Exp Cell Res 2001, 271:118–29.

    Article  PubMed  CAS  Google Scholar 

  70. Seiler N et al. Spermine cytotoxicity to human colon carcinoma-derived cells (CACO-2). Cell Biol Toxicol 2000, 16:117–30.

    Article  PubMed  CAS  Google Scholar 

  71. Stefanelli C et al. Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J 2000, 347 Pt 3:875–80.

    Article  PubMed  CAS  Google Scholar 

  72. Segal JA, Skolnick, P. Spermine-induced toxicity in cerebellar granule neurons is independent of its actions at NMDA receptors. J Neurochem 2000, 74:60–9.

    Article  PubMed  CAS  Google Scholar 

  73. Mohan RR et al. Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin Cancer Res 1999, 5(1):143–7.

    PubMed  CAS  Google Scholar 

  74. Gupta S et al. Chemoprevention of prostate carcinogenesis by alpha- difluoromethylornithine in TRAMP mice. Cancer Res 2000, 60(18):5125–33.

    PubMed  CAS  Google Scholar 

  75. Auvinen M et al. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992, 360:355–358.

    Article  PubMed  CAS  Google Scholar 

  76. Hibshoosh H, Johnson M, Weinstein, IB. effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene 1991, 6:739–43.

    PubMed  CAS  Google Scholar 

  77. Tabib A, Bachrach, U. Role of polyamines in mediating malignant transformation and oncogene expression. Int J Biochem Cell Biol 1999, 31:1289–95.

    Article  PubMed  CAS  Google Scholar 

  78. Murakami Y et al. Ornithine decarboxylase is degraded by the 26s proteosome without ubiquitination. Nature 1992, 360:597–599.

    Article  PubMed  CAS  Google Scholar 

  79. Rom E, Kahana, C. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc Natl Acad Sci USA 1994, 91:3959–63.

    Article  PubMed  CAS  Google Scholar 

  80. Koike C, Chao DT, Zetter, BR. Sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cells. Cancer Res 1999, 59: 6109–12.

    PubMed  CAS  Google Scholar 

  81. Mitchell JL et al. Antizyme induction by polyamine analogues as a factor in cell growth inhibition. Biochem J 2002, 366:663–71.

    Google Scholar 

  82. Tsuji T et al. Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 2001, 20:24–33.

    Article  PubMed  CAS  Google Scholar 

  83. Murakami Y et al. Forced expression of antizyme abolishes ornithine decarboxylase activity, suppresses, cellular levels of polyamines and inhibits cell growth. Biochem. J 1994, 304:183–87.

    PubMed  CAS  Google Scholar 

  84. Feith DJ, Shantz LM, Pegg, AE. Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 2001, 61:6073–81.

    PubMed  CAS  Google Scholar 

  85. Tsuji T et al. Reduction of ornithine decarboxylase antizyme (ODC-az) level in the 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis model. Oncogene 1998, 16:3379–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Newman, R.M., Zetter, B.R. (2008). Cell Cycle Regulation. In: Ablin, R.J., Mason, M.D. (eds) Metastasis of Prostate Cancer. Cancer Metastasis – Biology and Treatment, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5847-9_6

Download citation

Publish with us

Policies and ethics