Skip to main content

The extent and significance of petroleum hydrocarbon contamination in Crater Lake, Oregon

  • Chapter
Long-term Limnological Research and Monitoring at Crater Lake, Oregon

Part of the book series: Developments in Hydrobiology ((DIHY,volume 191))

  • 483 Accesses

Abstract

In order to evaluate hydrocarbon inputs to Crater Lake from anthropogenic and natural sources, samples of water, aerosol, surface slick and sediment were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) for determination of their aliphatic and aromatic hydrocarbon concentrations and compositions. Results show that hydrocarbons originate from both natural (terrestrial plant waxes and algae) and anthropogenic (petroleum use) sources and are entering the lake through direct input and atmospheric transport. The concentrations of petroleum hydrocarbons range from low to undetectable. The distributions and abundances of n-alkanes, polycyclic aromatic hydrocarbons (PAH) and unresolved complex mixture (UCM) from petroleum are similar for all surface slick sampling sites. The estimated levels of PAH in surface slicks range from 7–9 ng/m2 which are low. Transport of petroleum-derived hydrocarbons from the lake surface has resulted in their presence in some sediments, particularly near the boat operations mooring (total petroleum HC = 1440 µg/kg, dry wt. compared to naturally derived n-alkanes, 240 µg/kg, dry wt.). The presence of biomarkers such as the tricyclic terpanes, hopanes and steranes in shallow sediments further confirms petroleum input from boat traffic. In the deep lake sediments, petroleum hydrocarbon concentrations were very low (16 µg/kg, dry wt.). Very low concentrations of PAH were detected in shallow sediments (17–40 µg/kg at 5 m depth near the boat operations) and deep sediments (3–15 µg/kg at 580 m depth). The individual PAH concentrations in sediments (µg/kg or ppb range) are at least three orders of magnitude less than reported threshold effects levels (mg/kg or ppm range, test amphipod Hyalella azteca). Therefore, no adverse effects are expected to occur in benthic biota exposed to these sediments. Boating activities are leaving a detectable level of petroleum in surface waters and lake sediments but these concentrations are very low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bidleman, T. F., A. A. Castleberry, W. T. Foreman, M. T. Zaranski & D. W. Wall, 1990. Petroleum hydrocarbons in the surface water of two estuaries in the southeastern United States. Estuarine, Coastal and Shelf Science 30: 91–109.

    Article  CAS  Google Scholar 

  • Bieger, T., J. Hellou & T. A. Abrajano, 1996. Petroleum biomarkers as tracers of lubricating oil contamination. Marine Pollution Bulletin 32: 270–274.

    Article  CAS  Google Scholar 

  • Birch, M. E. & R. A. Cary, 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology 25: 221–241.

    CAS  Google Scholar 

  • Blumer, M., M. M. Mullin & D. W. Thomas, 1963. Pristane in zooplankton. Science 140: 974.

    Article  CAS  PubMed  Google Scholar 

  • Boughton, C. J. & M. S. Lico, 1998. Volatile organic compounds in Lake Tahoe, Nevada and California, July-September 1997. U.S. Geological Survey Fact Sheet FS-055-98.

    Google Scholar 

  • Bouloubassi, I. & A. Saliot, 1993. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologica Acta 16: 145–161.

    CAS  Google Scholar 

  • Buchman, M. F., 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle, WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.

    Google Scholar 

  • Callahan, M. A., M. W. Slimak, N. W. Gabel, I. P. May, C. F. Fowler, J. R. Freed, P. Jennings, R. L. Durfee, F. C. Whitmore, B. Maestri, W. R. Maber, B. R. Holt & C. Gould, 1979. Environmental fate of 129 priority pollutants, Vol. 2. EPA-440/4-79-029b: 95–98.

    Google Scholar 

  • Cerniglia, C. E., 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Advances in Applied Microbiology 30: 31–71.

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia, C. E. & M. A. Heitkamp, 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In Varanassi U. (ed.), Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC, Boca Raton, FL, USA, 41–68.

    Google Scholar 

  • Collier, R., J. Dymond, J. McManus & J. Lupton, 1990. Chemical and physical properties of the water column at Crater Lake, Oregon. In Drake E.T., G. L. Larson, J. Dymond & R. W. Collier (eds), Crater Lake an Ecosystem Study. Allen Press, Lawrence, KS, 69–79.

    Google Scholar 

  • Collier, R., J. Dymond & J. McManus, 1991. Studies of hydrothermal processes in Crater Lake, OR. Oregon State University, College of Oceanography Report #90-7. Submitted to the National Park Service, PNW Region, Seattle, WA.

    Google Scholar 

  • Cranwell, P. A., 1975. Environmental organic chemistry of rivers and lakes, both water and sediment. In Eglinton, G. (ed.), Environmental Chemistry, Vol. 1. The Chemical Society, London, 22–54.

    Google Scholar 

  • Cripps, G. C., 1994. Hydrocarbons in the Antarctic marine environment: Monitoring and background. International Journal of Environmental Analytical Chemistry 55: 3–13.

    CAS  Google Scholar 

  • Dimock, C. W., J. L. Lake, C. B. Norwood, R. D. Bowen, E. J. Hoffman, B. Kyle & J. G. Quinn, 1980. Field and laboratory methods for investigating a marine gasoline spill. Environmental Science and Technology 14: 1472–1475.

    Article  CAS  Google Scholar 

  • Edgerton, S. A., R. W. Coutant & M. V. Henley, 1987. Hydrocarbon fuel spill dispersion on water: A literature review. Chemosphere 16: 1475–1487.

    Article  CAS  Google Scholar 

  • Eglinton, G., B. R. T. Simoneit & J. A. Zoro, 1975. The recognition of organic pollutants in aquatic sediments. Proceedings of the Royal Society, London, B189, 415–442.

    Article  Google Scholar 

  • English, J. N., G. N. McDermott & C. Henderson, 1963a. Pollutional effects of outboard motor exhaust—laboratory studies. Water Pollution Control Federation Journal 35: 923–931.

    CAS  Google Scholar 

  • English, J. N., E. W. Surber & G. N. McDermott, 1963b. Pollutional effects of outboard motor exhaust-field studies. Water Pollution Control Federation Journal 35: 1121–1132.

    CAS  Google Scholar 

  • Environmental Protection Agency (EPA), 1977. Guidelines for the pollutional classification of Great Lakes harbor sediments. U.S. EPA, Region V, April, 1977.

    Google Scholar 

  • Environmental Protection Agency (EPA), 1986. Office of Solid Waste and Emergency Response. Test Methods for Evaluating Solid Waste, Vol. 1B, Laboratory Manual, Physical/Chemical Methods, Nov., 1986. Washington, DC.

    Google Scholar 

  • Farrington, J. W., 1980. An overview of the biogeochemistry of fossil fuel hydrocarbons in the marine environment. In Petrakis, L. F. & T. Weiss (eds), Petroleum in the Marine Environment, Advances in Chemistry Series 185. ACS, Washington, DC: 1–22.

    Google Scholar 

  • Farrington, J. W. & P. A. Meyers, 1975. Hydrocarbons in the marine environment. In Eglinton, G. (ed.), Environmental Chemistry, Vol. 1. The Chemical Society, London, 109–136.

    Google Scholar 

  • Hatcher, P. G., B. R. T. Simoneit, F. T. MacKenzie, A. C. Neumann, D. C. Thorstenson & S. M. Gerchakov, 1982. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda. Organic Geochemistry 4: 93–112.

    Article  CAS  Google Scholar 

  • Heitcamp, M. A. & C. E. Cerniglia, 1987. Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environmental Toxicology and Chemistry 6: 535–546.

    Google Scholar 

  • Hildemann, L. M., G. R. Markowski & G. R. Cass, 1991. Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology 25: 744–759.

    Article  CAS  Google Scholar 

  • Ho, E. S., P. A. Meyers & S. Pettingill, 1991. Geolipid content of sediments from an isolated lake: evidence for diagenetic alteration of source indicators. In Berthelin J. (ed.), Diversity of Environmental Biogeochemistry. Elsevier, Amsterdam: 67–74.

    Google Scholar 

  • Howard, P. H., R. S. Boethling, W. F. Jarvis, W. M. Meylan & E. M. Michalenko, 1991. Handbook of Environmental Degradation Rates. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Jackivicz, T. P., Jr. & L. N. Kuzminski, 1973. The effects of the interaction of outboard motors with the aquatic environment—a review. Environmental Research 6: 436–454.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. I., J. J. Shaw, R. A. Cary & J. J. Huntzicker, 1981. An automated thermal-optical method for the analysis of carbonaceous aerosol. In Macias, E. S. & P. H. Hopke (eds), Atmospheric Aerosol: Source/Air Quality Relationships. Amer. Chem. Soc., Symp. Ser. 167, Washington, DC, 223–233.

    Google Scholar 

  • Marcus, J. M., G. R. Swearingen, A. D. Williams & D. D. Heizer, 1988. Polynuclear aromatic hydrocarbon and heavy metal concentrations in sediments of coastal South Carolina marinas. Archives of Environmental Contamination and Toxicology 17: 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Mayfield, H. T. & M. V. Henley, 1991. Classification of jet fuels using high resolution gas chromatography and pattern recognition. In Monitoring Water in the 90’s: Meeting New Challenges, ASTM Special Technical Publication #1102, Philadelphia, PA, 579–597.

    Google Scholar 

  • Morris, R. J. & F. Culkin, 1975. Environmental organic chemistry of oceans, fjords and anoxic basins. In Eglinton, G. (ed.), Environmental Chemistry, Vol. 1. The Chemical Society, London, 81–108.

    Google Scholar 

  • National Visibility Monitoring Program (NVMP) 1995. Integrated report of optical, aerosol and scene monitoring data. Crater Lake National Park, March, 1993 through February, 1994, Interagency Monitoring of Protected Visual Environments (IMPROVE), 33 pp.

    Google Scholar 

  • Neff, J. M., 1979. Polycyclic Aromatic Hydrocarbons: Evaluations of Sources and Effects, National Academy Press, Washington, DC.

    Google Scholar 

  • Peters, K. E. & J. M. Moldowan, 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, Prentice-Hall Inc., Englewood-Cliffs, NJ.

    Google Scholar 

  • Phillips, K. N., 1968. Hydrology of Crater, East, and Davis Lakes, Oregon. U.S. Geological Survey, Water-Supply Paper 1859-E.

    Google Scholar 

  • Ramdahl, T., 1983. Retene—a molecular marker of wood combustion in ambient air. Nature 306: 580–582.

    Article  CAS  Google Scholar 

  • Readman, J. W., R. F. C. Mantoura & M. M. Rhead, 1984. The physico-chemical speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic systems. Fresenius Z Analytical Chemistry 319: 126–131.

    Article  CAS  Google Scholar 

  • Rogge, W. F., L. M. Hildemann, M. A. Mazurek, G. R. Cass & B. R. T. Simoneit, 1993a. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science and Technology 27: 636–651.

    Article  CAS  Google Scholar 

  • Rogge, W. F., M. A. Mazurek, L. M. Hildemann, G. R. Cass & B. R. T. Simoneit, 1993b. Quantitation of urban organic aerosols on a molecular level: Identification, abundance and seasonal variation. Proceedings of the Fourth International Conference on Carbonaceous Particles in the Atmosphere, Atmospheric Environment 27A: 1309–1330.

    CAS  Google Scholar 

  • Rowland, S., P. Donkin, E. Smith & E. Wraige, 2001. Aromatic hydrocarbon “Humps” in the marine environment: Unrecognized toxins? Environmental Science and Technology 35: 2640–2644.

    Article  PubMed  CAS  Google Scholar 

  • Simoneit, B. R. T., 1978. The organic geochemistry of marine sediments. In Riley, J. P. & R. Chester (eds), Chemical Oceanography, Vol. 7, 2nd edn. Academic Press, New York, 233–311.

    Google Scholar 

  • Simoneit, B. R. T., 1984. Organic matter of the troposphere-III: Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmospheric Environment 18: 51–67.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., 1986. Cyclic terpenoids of the geosphere. In Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier Science Publishers, Amsterdam, 43–99.

    Google Scholar 

  • Simoneit, B. R. T., 1989. Organic matter of the troposphere-V: Application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. Journal of Atmospheric Chemistry 8: 251–275.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., 1998. Biomarker PAHs in the Environment. In Neilson, A. H. (ed.), The Handbook of Environmental Chemistry, Vol. 3, Part 1, PAH and Related Compounds. Springer-Verlag, Berlin, Heidelberg, 176–221.

    Google Scholar 

  • Simoneit, B. R. T. & T. A. Aboul-Kassim, 1994. Detection of fuels on water in port of an estuary: Final report. Pacific States Marine Fisheries Commission.

    Google Scholar 

  • Simoneit, B. R. T. & I. R. Kaplan, 1980. Triterpenoids as molecular indicators of paleoseepage in Recent sediments of the Southern California Bight. Marine Environmental Research 3: 113–128.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. & M. A. Mazurek, 1982. Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment 16: 2139–2159.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., H. I. Halpern & B. M. Didyk, 1980. Lipid productivity of a high Andean lake. In Trudinger P. A., M. R. Walter & B. J. Ralph (eds), Biogeochemistry of Ancient and Modern Environments. Australian Academy of Science, Canberra, 201–210.

    Google Scholar 

  • Simoneit, B. R. T., J. N. Cardoso & N. Robinson, 1991. An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the south Atlantic from about 30–70°S. Chemosphere 23: 447–465.

    Article  CAS  Google Scholar 

  • Tiercelin, J. J., J. Boulègue & B. R. T. Simoneit, 1993. Hydrocarbons, sulphides, and carbonate deposits related to sublacustrine hydrothermal seeps in the North Tanganyika Trough, East African Rift. In Parnell, J., H. Kucha & P. Landais (eds), Bitumens in Ore Deposits. Springer-Verlag, Berlin, 96–113.

    Google Scholar 

  • Tissot, B. P. & D. H. Welte, 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, New York.

    Google Scholar 

  • Voudrias, E. A. & C. L. Smith, 1986. Hydrocarbon pollution from marinas in estuarine sediments. Estuarine, Coastal and Shelf Science 22: 271–284.

    Article  CAS  Google Scholar 

  • Wilcock, R. J., G. A. Corban, G. L. Northcott, A. L. Wilkins & A. G. Langdon, 1996. Persistence of polycyclic aromatic compounds of different molecular size and water solubility in surficial sediment of an intertidal sandflat. Environmental Toxicology and Chemistry 15: 670–676.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Oros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oros, D.R., Collier, R.W., Simoneit, B.R.T. (2007). The extent and significance of petroleum hydrocarbon contamination in Crater Lake, Oregon. In: Larson, G.L., Collier, R., Buktenica, M.W. (eds) Long-term Limnological Research and Monitoring at Crater Lake, Oregon. Developments in Hydrobiology, vol 191. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5824-0_6

Download citation

Publish with us

Policies and ethics