Skip to main content

A Geochemical and Petrological View of Mantle Plume

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, Y., Y. Tatsumi, and H. Yamada (1999) Element transport by dehydration of subducted sediments: Implication for arc and ocean island magmatism. The Island Arc, 8, 38–46.

    Article  Google Scholar 

  • Allègre, C., and D.L. Turcotte (1986) Implications of a two-component marble-cake mantle. Nature, 323, 123–127.

    Article  Google Scholar 

  • Bonatti, E. (1990) Not so hot ‘hot spots’ in the oceanic mantle. Science, 250, 107–111.

    Article  Google Scholar 

  • Brandon, A.D., M.D. Norman, R.J. Walker, and J.W. Morgan (1999) 186Os-187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett., 174, 25–42.

    Article  Google Scholar 

  • Brenan, J.M., H.F. Shaw, F.J. Ryerson, and D.L. Phinney (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta, 59, 3331–3350.

    Article  Google Scholar 

  • Chase, C.G. (1981) Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 227–284.

    Article  Google Scholar 

  • Chauvel, C., A.W. Hofmann, and P. Vidal (1992) HIMU-EM: The French Polynesian connection. Earth Planet. Sci. Lett., 110, 99–119.

    Article  Google Scholar 

  • Christensen, U.R., and D.A. Yuen (1985) Layered convection induced by phase transitions. J. Geophys. Res., 90, 10291–10300.

    Article  Google Scholar 

  • Cordery, M.J., G.F. Davies, and I.H. Campbell (1997) Genesis of flood basalts from eclogite-bearing mantle plumes. J. Geophys. Res., 102, 20179–20197.

    Article  Google Scholar 

  • Daines, M.J., and D.L. Kohlstedt (1993) A laboratory study of melt migration. Philos. Trans. R. Soc. Lond. A, 342, 43–52.

    Article  Google Scholar 

  • DePaolo, D.J., and G.J. Wasserburg (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 3, 743–746.

    Google Scholar 

  • Dixon, J.E., and D.A. Clague (2001) Volatiles in basaltic glasses from Loihi seamount, Hawaii: Evidence for a relatively dry plume component. J. Petrol., 42, 627–654.

    Article  Google Scholar 

  • Dixon, J.E., L. Leist, C. Langmuir, and J.G. Schilling (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420, 385–389.

    Article  Google Scholar 

  • Elliott, T., A. Zindler, and B. Bourdon (1999) Exploring the Kappa conundrum: The role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169, 129–145.

    Article  Google Scholar 

  • Farley, K.A., J.H. Natland, and H. Craig (1992) Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111, 183–199.

    Article  Google Scholar 

  • Farnetani, C.G., and M.A. Richards (1994) Numerical investigations of the mantle plume initiation model for flood basalt events. J. Geophys. Res., 99, 13813–13833.

    Article  Google Scholar 

  • Farnetani, C.G., M.A. Richards, and M.S. Ghiorso (1996) Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth Planet. Sci. Lett., 143, 81–94.

    Article  Google Scholar 

  • Gaetani, G.A., and T.L. Grove (1998) The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol., 131, 323–346.

    Article  Google Scholar 

  • Gast, P.W., G.R. Tilton, and C. Hedge (1964) Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145, 1181–1185.

    Article  Google Scholar 

  • Green, D.H., T.J. Falloon, S.M. Eggins, and G.M. Yaxley (2001) Primary magmas and mantle temperatures. Eur. J. Mineral., 13, 437–451.

    Article  Google Scholar 

  • Hanan, B.B., and D.W. Graham (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272, 991–995.

    Article  Google Scholar 

  • Hart, S.R., and H. Staudigel (1989) Isotopic characterization and identification of recycled components. In Hart, S.R., and L. Gülen (eds.) Crust/Mantle Recycling at Convergence Zones, Kluwer, Reidel, pp. 15–28.

    Google Scholar 

  • Hart, S.R., E.H. Hauri, L.A. Oschmann, and J.A. Whitehead (1992) Mantle plumes and entrainment: Isotope evidence. Science, 256, 517–520.

    Article  Google Scholar 

  • Hauri, E.H. (1996) Major-element variability in the Hawaiian mantle plume. Nature, 382, 415–419.

    Article  Google Scholar 

  • Hirose, K., and I. Kushiro (1993) Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett., 114, 477–489.

    Article  Google Scholar 

  • Hirose, K., and T. Kawamoto (1995) Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett., 133, 463–473.

    Article  Google Scholar 

  • Hirschmann, M.M., and E.M. Stolper (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol., 124, 185–208.

    Article  Google Scholar 

  • Hirschmann, M.M., T. Kogiso, M.B. Baker, and E.M. Stolper (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31, 481–484.

    Article  Google Scholar 

  • Hofmann, A.W. (1997) Mantle geochemistry: The message from oceanic volcanism. Nature, 385, 219–229.

    Article  Google Scholar 

  • Hofmann, A.W., and W.M. White (1982) Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57, 421–436.

    Article  Google Scholar 

  • Irifune, T., and T.A. Ringwood (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett., 117, 101–110.

    Article  Google Scholar 

  • Ita, J., and L. Stixrude (1992) Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res., 97(5), 6849–6866.

    Google Scholar 

  • Ito, G., and J.J. Mahoney (2005a) Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230, 29–46.

    Article  Google Scholar 

  • Ito, G., and J.J. Mahoney (2005b) Flow and melting of a heterogeneous mantle: 2. implications for a chemically nonlayered mantle. Earth Planet. Sci. Lett., 230, 47–63.

    Article  Google Scholar 

  • Johnson, M.C., and T. Plank (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst., 13, 1999GC000014.

    Google Scholar 

  • Jung, H., and S. Karato (2001) Water-induced fabric transitions in olivine. Science, 293, 1460–1463.

    Article  Google Scholar 

  • Kaneshima, S., and G. Helffrich (1999) Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science, 283, 1888–1891.

    Article  Google Scholar 

  • Kelemen, P.B. (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol., 31, 51–98.

    Google Scholar 

  • Kelemen, P.B., G. Hirth, N. Shimizu, M. Spiegelman, and H.J.B. Dick (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. Lond. A, 355, 283–318.

    Article  Google Scholar 

  • Kellogg, J.B., S.B. Jacobsen, and R.J. O’Connell (2002) Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204, 183–202.

    Article  Google Scholar 

  • Kogiso, T., Y. Tatsumi, and S. Nakano (1997a) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet. Sci. Lett., 148, 193–205.

    Article  Google Scholar 

  • Kogiso, T., Y. Tatsumi, G. Shimoda, and H.G. Barsczus (1997b) High μ (HIMU) ocean island basalts in southern Polynesia: New evidence for whole-mantle scale recycling of subducted oceanic crust. J. Geophys. Res., 102, 8085–8103.

    Article  Google Scholar 

  • Kogiso, T., K. Hirose, and E. Takahashi (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet. Sci. Lett., 162, 45–61.

    Article  Google Scholar 

  • Kogiso, T., M.M. Hirschmann, and D.J. Frost (2003) High pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett., 216, 603–617.

    Article  Google Scholar 

  • Kogiso, T., M.M. Hirschmann, and P.W. Reiners (2004a) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta, 68, 345–360.

    Article  Google Scholar 

  • Kogiso, T., M.M. Hirschmann, and M. Pertermann (2004b) High pressure partial melting of mafic lithologies in the mantle. J. Petrol., 45, 2407–2422.

    Article  Google Scholar 

  • Korenaga, J. (2005) Why did not the Ontong Java Plateau form subaerially? Earth Planet. Sci. Lett., 234, 385–399.

    Article  Google Scholar 

  • Lundstrom, C.C. (2000) Rapid diffusive infiltration of sodium into partially molten peridotite. Nature, 403, 527–530.

    Article  Google Scholar 

  • Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.

    Google Scholar 

  • McKenzie, D., and M.J. Bickle (1988) The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29, 625–679.

    Google Scholar 

  • McKenzie, D., and R.K. O’Nions (1983) Mantle reservoirs and ocean island basalts. Nature, 301, 229–231.

    Article  Google Scholar 

  • McKenzie, D., and R.K. O’Nions (1991) Partial melt distributions from inversion of rare earth element concentrations. J. Petrol., 32, 1021–1091.

    Google Scholar 

  • Médard, E., M.W. Schmidt, P. Schiano, and L. Ottolini (2006) Melting of amphibolite-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. J. Petrol., 47, 481–504.

    Article  Google Scholar 

  • Melson, W.G., T. O’Hearn, and P. Kimberly (1999) Volcanic glasses from sea-floor spreading centers and other deep sea tectonic settings: Major and minor element compositions in the Smithsonian WWW Data Set (abstract). EOS, Trans. Am. Geophys. Un., 80(46), F1177.

    Google Scholar 

  • Morgan, Z., and Y. Liang (2003) An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet. Sci. Lett., 214, 59–74.

    Article  Google Scholar 

  • Nichols, A.R.L., M.R. Carrol, and Á. Höskuldsson (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet. Sci. Lett., 202, 77–87.

    Article  Google Scholar 

  • Nishihara, Y., I. Aoki, E. Takahashi, K.N. Matsukage, and K. Funakoshi (2005) Thermal equation of state of majorite with MORB composition. Phys. Earth Planet. Inter., 148, 73–84.

    Article  Google Scholar 

  • Niu, Y., and M.J. O’Hara (2003) Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res., 108, doi:10.1029/2002JB002048.

    Google Scholar 

  • O’Hara, M.J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Rev., 4, 69–133.

    Article  Google Scholar 

  • Ono, S., Y. Ohishi, M. Issiki, and T. Watanuki (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, doi:10.1029/2004JB003196.

    Google Scholar 

  • Pertermann, M., and M.M. Hirschmann (2003a) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenites in basalt source regions from solidus location and melting rate. J. Geophys. Res., 108, doi:10.1029/2000JB000118.

    Google Scholar 

  • Pertermann, M., and M.M. Hirschmann (2003b) Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J. Petrol., 44, 2173–2201.

    Article  Google Scholar 

  • Pickering-Witter, J., and A.D. Johnston (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol., 140, 190–211.

    Article  Google Scholar 

  • Pilet, S., J. Hernandez, P. Sylvester, and M. Poujol (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet. Sci. Lett., 236, 148–166.

    Article  Google Scholar 

  • Riedel, M.R., and S. Karato (1997) Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett., 148, 27–43.

    Article  Google Scholar 

  • Roy-Barman, M., and C.J. Allègre (1995) 187Os/186Os in oceanic island basalts: Tracing oceanic crust recycling in the mantle. Earth Planet. Sci. Lett., 129, 145–161.

    Article  Google Scholar 

  • Saal, A.E., S.R. Hart, N. Shimizu, E.H. Hauri, and G.D. Layne (1998) Pb isotopic variability in melt inclusions from oceanic island basalts. Polynesia. Science, 282(5393), 1481–1484.

    Article  Google Scholar 

  • Schiano, P., K.W. Burton, B. Dupre, J.L. Birck, G. Guille, and C.J. Allegre (2001) Correlated Os-Pb-Nd-Sr isotopes in the Austral-Cook chain basalts: The nature of mantle components in plume sources. Earth Planet. Sci. Lett., 186(3–4), 527–537.

    Article  Google Scholar 

  • Schilling, J.G., M.B. Bergeron, and R. Evans (1980) Halogens in the mantle beneath the North Atlantic. Philos. Trans. R. Soc. Lond. A, 297, 147–178.

    Article  Google Scholar 

  • Sengör, A.M.C. (1985) The story of Tethys: How many wives did Okeanos have? Episodes, 8, 3–12.

    Google Scholar 

  • Silver, P.G., R.W. Carlson, and P. Olson (1988) Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.

    Article  Google Scholar 

  • Sims, K.W.W., D.J. DePaolo, M.T. Murrell, W.S. Baldridge, S. Goldstein, D. Clague, and M. Jull (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Ra disequilibria. Geochim. Cosmochim. Acta, 63, 4119–4138.

    Article  Google Scholar 

  • Stracke, A., M. Bizimis, and V.J.M. Salters (2003) Recycling oceanic crust: Quantitative constraints. Geochem. Geophys. Geosyst., 4, doi:10.1029/2001GC000223.

    Google Scholar 

  • Tackley, P.J., D.J. Stevenson, G.A. Glatzmaier, and G. Shubert (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature, 361, 699–704.

    Article  Google Scholar 

  • Takahashi, E., T. Shimazaki, Y. Tsuzaki, and H. Yoshida (1993) Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philos. Trans. R. Soc. Lond. A, 342, 105–120.

    Article  Google Scholar 

  • Tatsumi, Y., and T. Kogiso (2003) The subduction factory: Its role in the evolution of Earth’s crust and mantle. In Larter, R.D., and P.T. Leat (eds.) Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes, Geological Society of London, London, pp. 55–80.

    Google Scholar 

  • Tejada, M.L., J.J. Mahoney, C.R. Neal, R.A. Duncan, and M.G. Petterson (2002) Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol., 43, 449–484.

    Article  Google Scholar 

  • Wallace, P.J. (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett., 25, 3639–3642.

    Article  Google Scholar 

  • Watson, S., and D. McKenzie (1991) Melt generation by plumes: A study of Hawaiian volcanism. J. Petrol., 32, 501–537.

    Google Scholar 

  • White, W.M., and A.W. Hofmann (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296, 821–825.

    Article  Google Scholar 

  • Utsunomiya, A., T. Ota, B.F. Windley, N. Suzuki, Y. Uchio, K. Munekata, and S. Maruyama (2007) History of the Pacific superplume: Implications for the Pacific paleogeography since the Late Proterozoic. In Yuen, D.A., S. Maruyama, S. Karato, and B.F. Windley (eds.) Superplumes: Beyond Plate Tectonics, Springer, Dordrecht, pp. 363–408.

    Google Scholar 

  • Yasuda, A., T. Fujii, and K. Kurita (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res., 99, 9401–9414.

    Article  Google Scholar 

  • Zindler, A., and S. Hart (1986) Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kogiso, T. (2007). A Geochemical and Petrological View of Mantle Plume. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_7

Download citation

Publish with us

Policies and ethics