Skip to main content

Multiscale Seismic Tomography of Mantle Plumes and Subducting Slabs

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abers, G. (2005) Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematics. Phys. Earth Planet. Inter., 149, 7–29.

    Google Scholar 

  • Ai, Y., T. Zheng, W. Xu, Y. He, and D. Dong (2003) A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 212, 63–71.

    Google Scholar 

  • Aki, K., and W. Lee (1976) Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1. A homogeneous initial model. J. Geophys. Res., 81, 4381–4399.

    Google Scholar 

  • Aki, K., A. Christoffersson, and E. Husebye (1977) Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res., 82, 277–296.

    Google Scholar 

  • Allen, R., G. Nolet, W. Morgan et al. (2002) Imaging the mantle beneath Iceland using integrated seismological techniques. J. Geophys. Res., 107(B12), JB000595.

    Google Scholar 

  • Anderson, D. (2000) The thermal state of the upper mantle: No role for mantle plumes. Geophys. Res. Lett., 27, 3623–3626.

    Google Scholar 

  • Bijwaard, H., and W. Spakman (1999) Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett., 166, 121–126.

    Google Scholar 

  • Bijwaard, H., W. Spakman, and E. Engdahl (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30055–30078.

    Google Scholar 

  • Boschi, L., and A. Dziewonski (1999) High- and low-resolution images of the Earth’s mantle: Implications of different approaches to tomographic modeling. J. Geophys. Res., 104, 25567–25594.

    Google Scholar 

  • Breger, L., and B. Romanowicz (1998) Three-dimensional structure at the base of the mantle beneath the central Pacific. Science, 282, 718–720.

    Google Scholar 

  • Cadek, O., D.A. Yuen, V. Steinbach, A. Chopelas, and C. Matyska (1994) Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modeling. Earth Planet. Sci. Lett., 121, 385–402.

    Google Scholar 

  • Condie, K. (2001). Mantle Plumes and Their Record in Earth History, Cambridge University Press, Cambridge, UK, 306pp.

    Google Scholar 

  • Creager, K., and T. Jordan (1984) Slab penetration into the lower mantle. J. Geophys. Res., 89, 3031–3049.

    Google Scholar 

  • Creager, K., and T. Jordan (1986) Slab penetration into the lower mantle beneath the Mariana and other island arcs of the Northwest Pacific. J. Geophys. Res., 91, 3573–3589.

    Google Scholar 

  • Crough, S., and D. Jurdy (1980) Subducted lithosphere, hotspots, and the geoid. Earth Planet. Sci. Lett., 48, 15–22.

    Google Scholar 

  • Cserepes, L., and D. Yuen (2000) On the possibility of a second kind of mantle plume. Earth Planet. Sci. Lett., 183, 61–71.

    Google Scholar 

  • de Hoop, M., and R. van der Hilst (2005) On sensitivity kernels for wave equation transmission tomography. Geophys. J. Int., 160, 621–633.

    Google Scholar 

  • Dziewonski, A. (1984) Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.

    Google Scholar 

  • Dziewonski, A., B. Hager, and R. O’Connell (1977) Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 82, 239–255.

    Google Scholar 

  • Ellsworth, W., and R. Koyanagi (1977) Three-dimensional crust and mantle structure of Kilauea volcano, Hawaii. J. Geophys. Res., 82, 5379–5394.

    Google Scholar 

  • Engdahl, E., R. van der Hilst, and R. Buland (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88, 722–743.

    Google Scholar 

  • Evans, J. (1982) Compressional wave velocity structure of the upper 350 km under the eastern Snake River Plain near Rexburg, Idaho. J. Geophys. Res., 87, 2654–2670.

    Google Scholar 

  • Foulger, G. (2003) Plumes, or plate tectonic processes? Astron. Geophys., 43, 6.19–6.23.

    Google Scholar 

  • Foulger, G., M. Pritchard, B. Julian, and J. Evans (2000) The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper. Geophys. J. Int., 142, F1-F5.

    Google Scholar 

  • Fukao, Y., S. Widiyantoro, and M. Obayashi (2001) Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., 39, 291–323.

    Google Scholar 

  • Garnero, E. (2000) Heterogeneity of the lowermost mantle. Annu. Rev. Earth Planet. Sci. 28, 509–537.

    Google Scholar 

  • Goes, S., W. Spakman, and H. Bijwaard (1999) A lower mantle source for Central European volcanism. Science, 286, 1928–1931.

    Google Scholar 

  • Grand, S., R. van der Hilst, and S. Widiyantoro (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7, 1–7.

    Google Scholar 

  • Green, H., and P. Burnley (1989) A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733–737.

    Google Scholar 

  • Griffiths, R., and M. Richards (1989) The adjustment of mantle plumes to changes in plate motion. Geophys. Res. Lett., 16, 437–440.

    Google Scholar 

  • Hansen, U., and D. Yuen (1988) Numerical simulation of thermal chemical instabilities at the core-mantle boundary. Nature, 334, 237–240.

    Google Scholar 

  • Hasegawa, A., and A. Yamamoto (1994) Deep, low-frequency microearthquakes in or around seismic low-velocity zones beneath active volcanoes in northeastern Japan. Tectonophysics, 233, 233–252.

    Google Scholar 

  • Hasegawa, A., N. Umino, and A. Takagi (1978) Double-planed deep seismic zone and upper-mantle structure in the northeastern Japan arc. Geophys. J. R. Astron. Soc., 54, 281–296.

    Google Scholar 

  • Helmberger, D., L. Wen, and X. Ding (1998) Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary. Nature, 396, 251–258.

    Google Scholar 

  • Honda, S., and M. Saito (2003) Small-scale convection under the back-arc occurring in the low viscosity wedge. Earth Planet. Sci. Lett., 216, 703–715.

    Google Scholar 

  • Honda, S., D.A. Yuen, S. Balachandar, and D. Reuteler (1993) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science, 259, 1308–1311.

    Google Scholar 

  • Hung, S., Y. Shen, and L. Chiao (2004) Imaging seismic velocity structure beneath the Iceland hotspot: A finite frequency approach. J. Geophys. Res., 109, B08305.

    Google Scholar 

  • Inoue, H., Y. Fukao, K. Tanabe, and Y. Ogata (1990) Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter., 59, 294–328.

    Google Scholar 

  • Iyer, H. (1989) Seismic tomography. In James, D. (ed.) The Encyclopedia of Solid Earth Geophysics, Van Nostrand Reinhold, New York, pp. 1131–1151.

    Google Scholar 

  • Ji, Y., and H. Nataf (1998) Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett., 159, 99–115.

    Google Scholar 

  • Kanamori, H. (1971) Great earthquakes at island arcs and the lithosphere. Tectonophysics, 12, 187–198.

    Google Scholar 

  • Kaneshima, S., and G. Helffrich (2003) Subparallel dipping heterogeneities in the mid-lower mantle. J. Geophys. Res., 108(B5), JB001596.

    Google Scholar 

  • Kellogg, L., and S. King (1993) Effect of mantle plumes on the growth of Dʺ by reaction between the core and mantle. Geophys. Res. Lett., 20, 379–392.

    Google Scholar 

  • Keyser, M., J. Ritter, and M. Jordan (2002) 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett., 203, 59–82.

    Google Scholar 

  • King, S., and D. Anderson (1995) An alternate mechanism of flood basalt volcanism. Earth Planet. Sci. Lett., 136, 269–279.

    Google Scholar 

  • King, S., and J. Ritsema (2000) African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons. Science, 290, 1137–1140.

    Google Scholar 

  • Kirby, S. (1991) Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252, 216–224.

    Google Scholar 

  • Knittle, E., and R. Jeanloz (1991) Earth’s core-mantle boundary: Results of experiments at high pressure and temperatures. Science, 251, 1438–1443.

    Google Scholar 

  • Koper, K., D. Wiens, L. Dorman, J. Hildebrand, and S. Webb (1998) Modeling the Tonga slab: Can travel time data resolve a metastable olivine wedge? J. Geophys. Res., 103, 30079–30100.

    Google Scholar 

  • Korenaga, J., and T. Jordan (2002) Effects of vertical boundaries on infinite Prandtl number thermal convection. Geophys. J. Int., 147, 639–659.

    Google Scholar 

  • Laske, G., J. Morgan, and J. Orcutt (1999) First results from the Hawaiian SWELL pilot experiment. Geophys. Res. Lett., 26, 3397–3400.

    Google Scholar 

  • Lay, T., Q. Williams, and E. Garnero (1998) The core-mantle boundary layer and deep Earth dynamics. Nature, 392, 461–468.

    Google Scholar 

  • Lei, J., and D. Zhao (2005) P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397, 281–295.

    Google Scholar 

  • Lei, J., and D. Zhao (2006) A new insight into the Hawaiian plume. Earth Planet. Sci. Lett., 241, 438–453.

    Google Scholar 

  • Li, X., R. Kind, K. Priestley, S. Sobolev, and F. Tilmann (2000) Mapping the Hawaiian plume conduit with converted seismic waves. Nature, 405, 938–941.

    Google Scholar 

  • Lithgow-Bertelloni, C., and M. Richards (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys., 36, 27–78.

    Google Scholar 

  • Loper, D. (1991) Mantle plumes. Tectonophysics, 187, 373–384.

    Google Scholar 

  • Machetel, P., and P. Weber (1991) Intermittent layered convection in a model mantle with an endothermal phase change at 670 km. Nature, 350, 55–57.

    Google Scholar 

  • Malamud, B., and D. Turcotte (1999) How many plumes are there? Earth Planet. Sci. Lett., 174, 113–124.

    Google Scholar 

  • Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.

    Google Scholar 

  • Matsuzawa, T., N. Umino, A. Hasegawa, and A. Takagi (1986) Upper mantle velocity structure estimated from PS-converted wave beneath the north–eastern Japan arc. Geophys. J. R. Astron. Soc., 86, 767–787.

    Google Scholar 

  • McDougall, L. (1971) Volcanic island chains and sea floor spreading. Nature, 231, 141–144.

    Google Scholar 

  • Mishra, O., D. Zhao, N. Umino, and A. Hasegawa (2003) Tomography of northeast Japan forearc and its implications for interplate seismic coupling. Geophys. Res. Lett., 30(16), GL017736.

    Google Scholar 

  • Molnar, P., and J. Stock (1987) Relative motions of hotspots in the Pacific, Atlantic, and Indian oceans since late Cretaceous time. Nature, 327, 587–591.

    Google Scholar 

  • Montagner, J. (1994) Can seismology tell us anything about convection in the mantle? Rev. Geophys., 32, 115–138.

    Google Scholar 

  • Montelli, R., G. Nolet, G. Master, F. Dahlen, E. Engdahl, and H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.

    Google Scholar 

  • Morgan, W. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.

    Google Scholar 

  • Morgan, W. (1972) Deep motions and deep mantle convection. Geol. Soc. Am. Mem., 132, 7–22.

    Google Scholar 

  • Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.

    Google Scholar 

  • Nakajima, J., and A. Hasegawa (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth Planet. Sci. Lett., 225, 365–377.

    Google Scholar 

  • Nakanishi, I., and D. Anderson (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seismo. Soc. Am., 72, 1185–1194.

    Google Scholar 

  • Nataf, H. (2000) Seismic imaging of mantle plumes. Annu. Rev. Earth Planet. Sci., 28, 391–417.

    Google Scholar 

  • Niu, F., and H. Kawakatsu (1996) Complex structure of mantle discontinuities at the tip of the subducting slab beneath northeast China. J. Phys. Earth, 44, 701–711.

    Google Scholar 

  • Obara, K. (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296, 1679–1681.

    Google Scholar 

  • Pilidou, S., K. Priestley, O. Gudmundsson, and E. Debayle (2004) Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: The Iceland and Azores plumes. Geophys. J. Int., 159, 1057–1076.

    Google Scholar 

  • Priestley, K., and F. Tilmann (1999) Shear-wave structure of the lithosphere above the Hawaiian hotspot from two-station Rayleigh wave phase velocity measurements. Geophys. Res. Lett., 26, 1493–1496.

    Google Scholar 

  • Richards, M., B. Hager, and N. Sleep (1988) Dynamically supported geoid highs over hotspots: Observation and theory. J. Geophys. Res., 93, 7690–7708.

    Google Scholar 

  • Ritsema, J., and R. Allen (2003) The elusive mantle plume. Earth Planet. Sci. Lett., 207, 1–12.

    Google Scholar 

  • Ritsema, J., H. Jan der Heijst, and J. Woodhouse (1999) Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286, 1925–1928.

    Google Scholar 

  • Ritter, J., M. Jordan, U. Christensen, and U. Achauer (2001) A mantle plume below the Eifel volcanic field, Germany. Earth Planet. Sci. Lett., 186, 7–14.

    Google Scholar 

  • Rogers, G., and H. Dragert (2003) Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300, 1942–1943.

    Google Scholar 

  • Romanowicz, B. (2003) Global mantle tomography: Progress status in the past 10 years. Ann. Rev. Earth Planet. Sci., 31, 303–328.

    Google Scholar 

  • Russell, S., T. Lay, and E. Garnero (1999) Small scale lateral shear velocity and anisotropy heterogeneity near the core-mantle boundary beneath the central Pacific imaged using broadband ScS waves. J. Geophys. Res., 104, 13183–13199.

    Google Scholar 

  • Saltzer, R., and E. Humphreys (1997) Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. J. Geophys. Res., 102, 11829–11842.

    Google Scholar 

  • Schutt, D., and E. Humphreys (2004) P and S wave velocity and Vp/Vs in the wake of the Yellowstone hot spot. J. Geophys. Res., 109, B01305.

    Google Scholar 

  • Shen, Y., S. Solomon, I. Bjarnason, and G. Nolet (2002) Seismic evidence for a tilted mantle plume and north–south mantle flow beneath Iceland. Earth Planet. Sci. Lett., 197, 261–272.

    Google Scholar 

  • Sleep, N. (1990) Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res., 95, 6715–6736.

    Google Scholar 

  • Stachnik, J., G. Abers, and D. Christensen (2004) Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J. Geophys. Res., 109(B10), B10304.

    Google Scholar 

  • Stacey, F., and D. Loper (1983) The thermal boundary layer interpretation of Dʺ and its role as a plume source. Phys. Earth Planet. Inter., 33, 45–50.

    Google Scholar 

  • Stefanick, M., and D. Jurdy (1984) The distribution of hot spots. J. Geophys. Res., 89, 9919–9925.

    Google Scholar 

  • Steinberger, B. (2000) Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res., 105, 11127–11152.

    Google Scholar 

  • Stern, R. (2002) Subduction zones. Rev. Geophys., 40(4), RG000108.

    Google Scholar 

  • Stixrude, L. (1998) Elastic constants and anisotropy of MgSiO3 perovskite, periclase, and SiO2 at high pressure. In Gurnis, M., B. Buffett, K. Knittle, M. Wysession (eds.) The Core-Mantle Boundary, AGU, pp. 83–96.

    Google Scholar 

  • Su, W., R. Woodward, and A. Dziewonski (1994) Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res., 99, 6945–6980.

    Google Scholar 

  • Tajima, F., Y. Fukao, M. Obayashi, and T. Sakurai (1998) Evaluation of slab images in the northwestern Pacific. Earth Planets Space, 50, 953–964.

    Google Scholar 

  • Tamura, Y., Y. Tatsumi, D. Zhao, Y. Kido, and H. Shukuno (2002) Hot fingers in the mantle wedge: new insight into magma genesis in subduction zones. Earth Planet. Sci. Lett., 197, 105–116.

    Google Scholar 

  • Tanimoto, T., and D.Anderson (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–290.

    Google Scholar 

  • Tarduno, J., and R. Cottrell (1997) Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts. Earth Planet. Sci. Lett., 153, 171–180.

    Google Scholar 

  • Tatsumi, Y., S. Maruyama, and S. Nohda (1990) Mechanism of backarc opening in the Japan Sea: Role of asthenospheric injection. Tectonophysics, 181, 299–306.

    Google Scholar 

  • Thompson, P., and P. Tackley (1998) Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity. Geophys. Res. Lett., 25, 1999–2002.

    Google Scholar 

  • Thurber, C. (1983) Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 88, 8226–8236.

    Google Scholar 

  • Thurber, C., and K. Aki (1987) Three-dimensional seismic imaging. Ann. Rev. Earth Planet. Sci., 15, 115–139.

    Google Scholar 

  • Tilmann, F., H. Benz, K. Priestley, and P. Okubo (2001) P-wave velocity structure of the uppermost mantle beneath Hawaii from travel time tomography. Geophys. J. Int., 146, 594–606.

    Google Scholar 

  • Tryggvason, K., E. Husebye, and R. Stefansson (1983) Seismic image of the hypothesized Icelandic hot spot. Tectonophysics, 100, 97–118.

    Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. Wentzcovitch (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.

    Google Scholar 

  • Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000) Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics, 319, 241–260.

    Google Scholar 

  • Turcotte, D., and E. Oxburgh (1973) Mid-plate tectonics. Nature, 244, 337–339.

    Google Scholar 

  • Turcotte, D., and G. Schubert (1982) Geodynamics, John Wiley and Sons Press, New York, 450pp.

    Google Scholar 

  • Umino, N., A. Hasegawa, and T. Matsuzawa (1995) sP depth phase at small epicentral distances and estimated subducting plate boundary. Geophys. J. Int., 120, 356–366.

    Google Scholar 

  • Ukawa, M., and K. Obara (1993) Low frequency earthquakes around Moho beneath the volcanic front in the Kanto district, central Japan. Bull. Volcanol. Soc. Jpn., 38, 187–197.

    Google Scholar 

  • van der Hilst, R., and M. de Hoop (2005) Banana-doughnut kernels and mantle tomography. Geophys. J. Int., 163, 956–961.

    Google Scholar 

  • van der Hilst, R., S. Widiyantoro, and E. Engdahl (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.

    Google Scholar 

  • Van der Voo, R., W. Spakman, and H. Bijwaard (1999a) Mesozoic subducted slabs under Siberia. Nature, 397, 246–249.

    Google Scholar 

  • Van der Voo, R., W. Spakman, and H. Bijwaard (1999b) Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171, 7–20.

    Google Scholar 

  • Vasco, D., L. Johnson, and R. Pulliam (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-SdS travel time residuals. J. Geophys. Res., 100, 24037–24059.

    Google Scholar 

  • Vinnik, L., L. Breger, and B. Romanowicz (1998) Anisotropic structures at the base of the mantle. Nature, 393, 564–567.

    Google Scholar 

  • Vogt, P. (1981) On the applicability of thermal conduction models to mid-plate volcanism, comments on a paper by Gass et al. J. Geophys. Res., 86, 950–960.

    Google Scholar 

  • Wang, Z., and D. Zhao (2005) Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data. Phys. Earth Planet. Inter., 152, 144–162.

    Google Scholar 

  • Weinstein, S., and P. Olson (1989) The proximity of hotspots to convergent and divergent plate boundaries. Geophys. Res. Lett., 16, 433–436.

    Google Scholar 

  • Williams, Q., and E. Garnero (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.

    Google Scholar 

  • Wilson, J. (1963) A possible origin of the Hawaiian islands. Can. J. Phys., 41, 863–870.

    Google Scholar 

  • Wilson, J. (1973) Mantle plumes and plate motions. Tectonophysics, 19, 149–164.

    Google Scholar 

  • Wolfe, C., I. Bjarnason, J. VanDecar, and S. Soloman (1997) Seismic structure of the Iceland mantle plume. Nature, 385, 245–247.

    Google Scholar 

  • Wolfe, C., S. Solomon, P. Silver, J. VanDecar, and R. Russo (2002) Inversion of body-wave delay times for mantle structure beneath the Hawaiian islands: Results from the PELENET experiment. Earth Planet. Sci. Lett., 198, 129–145.

    Google Scholar 

  • Woodhouse, J., and A. Dziewonski (1984) Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res., 89, 5953–5986.

    Google Scholar 

  • Woods, M., and E. Okal (1996) Rayleigh-wave dispersion along the Hawaiian swell: A test of lithospheric thinning by thermal rejuvenation at a hotspot. Geophys. J. Int., 125, 325–339.

    Google Scholar 

  • Woodward, R., and G. Master (1991) Lower mantle structure from ScS-S differential travel times. Nature, 352, 231–233.

    Google Scholar 

  • Wysession, M., T. Lay, and J. Revenaugh (1998) The Dʺ discontinuity and its implications. In Gurnis, M., B. Buffett, K. Knittle, M. Wysession (eds.) The Core-Mantle Boundary, AGU, pp. 273–297.

    Google Scholar 

  • Yuan, H., and K. Dueker (2005) Teleseismic P-wave tomogram of the yellowstone plume. Geophys. Res. Lett., 32(7), L07304.

    Google Scholar 

  • Yuen, D., O. Cadek, A. Chopelas, and C. Matyska (1993) Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Lett., 20, 899–902.

    Google Scholar 

  • Zhang, Y., and T. Tanimoto (1993) High-resolution global upper mantle structure and plate tectonics. J. Geophys. Res., 98, 9793–9823.

    Google Scholar 

  • Zhao, D. (2001a) New advances of seismic tomography and its applications to subduction zones and earthquake fault zones. The Island Arc, 10, 68–84.

    Google Scholar 

  • Zhao, D. (2001b) Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Phys. Earth Planet. Inter., 127, 197–214.

    Google Scholar 

  • Zhao, D. (2001c) Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett., 192, 251–265.

    Google Scholar 

  • Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.

    Google Scholar 

  • Zhao, D., A. Hasegawa, and S. Horiuchi (1992) Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97, 19909–19928.

    Google Scholar 

  • Zhao, D., A. Hasegawa, and H. Kanamori (1994) Deep structure of Japan subduction zone as derived from local, regional and teleseismic events. J. Geophys. Res., 99, 22313–22329.

    Google Scholar 

  • Zhao, D., D. Christensen, and H. Pulpan (1995) Tomographic imaging of the Alaska subduction zone. J. Geophys. Res., 100, 6487–6504.

    Google Scholar 

  • Zhao, D., Y. Xu, D. Wiens, L. Dorman, J. Hildebrand, and S. Webb (1997) Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278, 254–257.

    Google Scholar 

  • Zhao, D., K. Asamori, and H. Iwamori (2000) Seismic structure and magmatism of the young Kyushu subduction zone. Geophys. Res. Lett., 27, 2057–2060.

    Google Scholar 

  • Zhao, D., O.P. Mishra, and R. Sanda (2002) Influence of fluids and magma on earthquakes: Seismological evidence. Phys. Earth Planet. Inter., 132, 249–267.

    Google Scholar 

  • Zhao, D., J. Lei, and R. Tang (2004) Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chinese Sci. Bull., 49, 1401–1408.

    Google Scholar 

  • Zhao, D., S. Todo, and J. Lei (2005) Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett., 235, 623–631.

    Google Scholar 

  • Zhao, D., J. Lei, T. Inoue, A. Yamada, and S. Gao (2006) Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett., 243, 681–691.

    Google Scholar 

  • Zhou, H. (1996) A high-resolution P wave model for the top 1200 km of the mantle. J. Geophys. Res., 101, 27791–27810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zhao, D. (2007). Multiscale Seismic Tomography of Mantle Plumes and Subducting Slabs. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_1

Download citation

Publish with us

Policies and ethics