Skip to main content

Radiation Effects in Microelectronics

  • Chapter
Radiation Effects on Embedded Systems

Abstract

Understanding the effects of radiation on electronic devices and circuits is particularly important for space applications because the electronics may be exposed to a variety of energetic particles and photons. The resulting effects may be manifested as long-term parametric degradation or as transient changes in the state of the circuits. This paper presents an overview of these effects, emphasizing those device-level effects that are particularly relevant for space environments. MOS and bipolar technologies are considered. A new simulation method for analyzing single-event effects, based on detailed descriptions of a large number of individual events, is described. This method has the potential to provide more accurate analysis than conventional methods based on simulation of the device response to an average event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Felix, D. M. Fleetwood, R. D. Schrimpf, J. G. Hong, G. Lucovsky, J. R. Schwank, and M. R. Shaneyfelt, “Total-Dose Radiation Response of Hafnium-Silicate Capacitors”, IEEE Trans. Nucl. Sci., vol. 49, pp. 3191–3196, 2002.

    Article  Google Scholar 

  2. J. A. Felix, H. D. Xiong, D. M. Fleetwood, E. P. Gusev, R. D. Schrimpf, A. L. Sternberg, and C. D’Emic, “Interface trapping properties of Al2O3/SiOxNy/Si(100) nMOSFETS after exposure to ionizing radiation”, Microelectron. Engineering, vol. 72, pp. 50–54, 2004.

    Article  Google Scholar 

  3. J. A. Felix, M. R. Shaneyfelt, D. M. Fleetwood, T. L. Meisenheimer, J. R. Schwank, R. D. Schrimpf, P. E. Dodd, E. P. Gusev, and C. D’Emic, “Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si[100] gate dielectric stacks”, IEEE Trans. Nucl. Sci., vol. 50, pp. 1910–1918, 2003.

    Article  Google Scholar 

  4. M. Turowski, A. Raman, and R. D. Schrimpf, “Nonuniform total-dose-induced charge distribution in shallow-rench isolation oxides”, IEEE Transactions on Nuclear Science, vol. 51, pp. 3166–3171, 2004.

    Article  Google Scholar 

  5. R. D. Schrimpf, “Gain Degradation and Enhanced Low-Dose-Rate Sensitivity in Bipolar Junction Transistors”, Int. J. High Speed Electronics and Systems, vol. 14, pp. 503–517, 2004.

    Article  Google Scholar 

  6. D. M. Fleetwood, “‘Border Traps’ in MOS Devices”, IEEE Trans. Nucl. Sci., vol. 39, pp. 269–271, 1992.

    Article  Google Scholar 

  7. P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics”, IEEE Trans. Nucl. Sci., vol. 50, pp. 583–602, 2003.

    Article  Google Scholar 

  8. P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank, “Production and propagation of single-event transients in high-speed digital logic ICs”, IEEE Trans. Nucl. Sci., vol. 51, pp. 3278–3284, 2004.

    Article  Google Scholar 

  9. R. A. Reed, P. W. Marshall, H. S. Kim, P. J. McNulty, B. Fodness, T. M. Jordan, R. Reedy, C. Tabbert, M. S. T. Liu, W. Heikkila, S. Buchner, R. Ladbury, and K. A. LaBel, “Evidence for angular effects in proton-induced single-event upsets”, IEEE Trans. Nucl. Sci., vol. 49, pp. 3038–3044, 2002.

    Article  Google Scholar 

  10. L. W. Massengill, S. E. Diehl, and J. S. Browning, “Dose-Rate Upset Patterns in a 16K Cmos Sram”, IEEE Trans. Nucl. Sci., vol. 33, pp. 1541–1545, 1986.

    Google Scholar 

  11. G. F. Derbenwick and B. L. Gregory, “Process Optimization of Radiation Hardened CMOS Circuits”, IEEE Trans. Nucl. Sci., vol. 22, pp. 2151–2158, 1975.

    Google Scholar 

  12. N. S. Saks and D. B. Brown, “Interface Trap Formation via the Two-Stage H+ Process”, IEEE Trans. Nucl. Sci., vol. NS-36, pp. 1848–1857, 1989.

    Article  Google Scholar 

  13. S. T. Pantelides, S. N. Rashkeev, R. Buczko, D. M. Fleetwood, and R. D. Schrimpf, “Reactions of Hydrogen with Si-SiO2 Interfaces”, IEEE Trans. Nucl. Sci., vol. 47, pp. 2262–2268, 2000.

    Article  Google Scholar 

  14. S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, “Proton-Induced Defect Generation at the Si-SiO2 Interface”, IEEE Trans. Nucl. Sci., vol. 48, pp. 2086–2092, 2001.

    Article  Google Scholar 

  15. S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, “Defect generationby hydrogen at the Si-SiO2 interface”, Phys. Rev. Lett., vol. 87, pp. 165506.1–165506.4, 2001.

    Article  Google Scholar 

  16. S. C. Sun and J. D. Plummer, “Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces”, IEEE Trans. Electron Devices, vol. ED-27, pp. 1497–1508, 1980.

    Google Scholar 

  17. K. F. Galloway, M. Gaitan, and T. J. Russell, “A Simple Model for Separating Interface and Oxide Charge Effects in MOS Device Characteristics”, IEEE Trans. Nucl. Sci., vol. NS-31, pp. 1497–1501, 1984.

    Google Scholar 

  18. D. Zupac, K. F. Galloway, P. Khosropour, S. R. Anderson, R. D. Schrimpf, and P. Calvel, “Separation of Effects of Oxide-Trapped Charge and Interface-Trapped Charge on Mobility in Irradiated Power MOSFETs”, IEEE Trans. Nucl. Sci., vol. 40, pp. 1307–1315, 1993.

    Article  Google Scholar 

  19. C. Y. Chang and S. M. Sze, ULSI Devices. New York, NY: Wiley-Interscience, 2000.

    Google Scholar 

  20. J. Y. Chen, CMOS Devices and Technology for VLSI. Saddle River, NJ: Prentice Hall, 1990.

    Google Scholar 

  21. R. D. Schrimpf, “Recent Advances in Understanding Total-Dose Effects in Bipolar Transistors”, IEEE Trans. Nucl. Sci., vol. 43, pp. 787–796, 1996.

    Article  Google Scholar 

  22. S. L. Kosier, A. Wei, R. D. Schrimpf, D. M. Fleetwood, M. DeLaus, R. L. Pease, and W. E. Combs, “Physically Based Comparison of Hot-Carrier-Induced and Ionizing-Radiation-Induced Degradation in BJTs”, IEEE Trans. Electron Devices, vol. 42, pp. 436–444, 1995.

    Article  Google Scholar 

  23. R. L. Pease, R. M. Turfler, D. Platteter, D. Emily, and R. Blice, “Total Dose Effects in Recessed Oxide Digital Bipolar Microcircuits”, IEEE Trans. Nucl. Sci., vol. NS-30, pp. 4216–4223, 1983.

    Google Scholar 

  24. J. L. Titus and D. G. Platteter, “Wafer Mapping of Total Dose Failure Thresholds in a Bipolar Recessed Field Oxide Technology”, IEEE Trans. Nucl. Sci., vol. 34, pp. 1751–1756, 1987.

    Article  Google Scholar 

  25. E. W. Enlow, R. L. Pease, W. E. Combs, and D. G. Platteter, “Total dose induced hole trapping in trench oxides”, IEEE Trans. Nucl. Sci., vol. 36, pp. 2415–2422, 1989.

    Article  Google Scholar 

  26. J. P. Raymond, R. A. Gardner, and G. E. LaMar, “Characterization of radiation effects on trench-isolated bipolar analog microcircuit technology”, IEEE Trans. Nucl. Sci., vol. 39, pp. 405–412, 1992.

    Article  Google Scholar 

  27. W. C. Jenkins, “Dose-rate-independent total dose failure in 54F10 bipolar logic circuits”, IEEE Trans. Nucl. Sci., vol. 39, pp. 1899–1902, 1992.

    Article  Google Scholar 

  28. M. Dentan, E. Delagnes, N. Fourches, M. Rouger, M. C. Habrard, L. Blanquart, P. Delpierre, R. Potheau, R. Truche, J. P. Blanc, E. Delevoye, J. Gautier, J. L. Pelloie, d. Pontcharra, O. J.; Flament, J. L. Leray, J. L. Martin, J. Montaron, and O. Musseau, “Study of a CMOS-JFET-bipolar radiation hard analog-digital technology suitable for high energy physics electronics”, IEEE Trans. Nucl. Sci., vol. 40, pp. 1555–1560, 1993.

    Article  Google Scholar 

  29. M. Dentan, P. Abbon, E. Delagnes, N. Fourches, D. Lachartre, F. Lugiez, B. Paul, M. Rouger, R. Truche, J. P. Blanc, C. Leroux, E. Delevoye-Orsier, J. L. Pelloie, J. de Pontcharra, O. Flament, J. M. Guebhard, J. L. Leray, J. Montaron, and O. Musseau, “DMILL, a mixed analog-digital radiation-hard BICMOS technology for high energy physics electronics”, IEEE Trans. Nucl. Sci., vol. 43, pp. 1763–1767, 1996.

    Article  Google Scholar 

  30. A. Wei, S. L. Kosier, R. D. Schrimpf, W. E. Combs, and M. DeLaus, “Excess Collector Current Due to an Oxide-Trapped-Charge-Induced Emitter in Irradiated NPN BJTs”, IEEE Trans. Electron Devices, vol. 42, pp. 923–927, 1995.

    Article  Google Scholar 

  31. H. J. Barnaby, R. D. Schrimpf, D. M. Fleetwood, and S. L. Kosier, “The Effects of Emitter-Tied Field Plates on Lateral PNP Ionizing Radiation Response”, in IEEE BCTM Proc., pp. 35–38, 1998.

    Google Scholar 

  32. R. N. Nowlin, R. D. Schrimpf, E. W. Enlow, W. E. Combs, and R. L. Pease, “Mechanisms of Ionizing-Radiation-Induced Gain Degradation in Modern Bipolar Devices”, in Proc. 1991 IEEE Bipolar Circuits and Tech. Mtg., pp. 174–177, 1991.

    Google Scholar 

  33. A. S. Kobayashi, A. L. Sternberg, L. W. Massengill, R. D. Schrimpf, and R. A. Weller, “Spatial and temporal characteristics of energy deposition by protons and alpha particles in silicon”, IEEE Trans. Nucl. Sci., vol. 51, pp. 3312–3317, 2004.

    Article  Google Scholar 

  34. R. A. Weller, A. L. Sternberg, L. W. Massengill, R. D. Schrimpf, and D. M. Fleetwood, “Evaluating Average and Atypical Response in Radiation Effects Simulations”, IEEE Trans. Nucl. Sci., vol. 50, pp. 2265–2271, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schrimpf, R. (2007). Radiation Effects in Microelectronics. In: VELAZCO, R., FOUILLAT, P., REIS, R. (eds) Radiation Effects on Embedded Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5646-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5646-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5645-1

  • Online ISBN: 978-1-4020-5646-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics