Skip to main content

Abstract

... But I must speak again about crystals, shapes, colors. There are crystals as huge as the colonnade of a cathedral, soft as mould, prickly as thorns; pure, azure, green, like nothing else in the world, fiery black; mathematically exact, complete, like constructions by crazy, capricious scientists, or reminiscent of the liver, the heart ... There are crystal grottos, monstrous bubbles of mineral mass, there is fermentation, fusion, growth of minerals, architecture and engineering art ... Even in human life there is a hidden force towards crystallization. Egypt crystallizes in pyramids and obelisks, Greece in columns; the middle ages in vials; London in grinny cubes ... Like secret mathematical flashes of lightning the countless laws of construction penetrate the matter. To equal nature it is necessary to be mathematically and geometrically exact. Number and phantasy, law and abundance—these are the living, creative strengths of nature; not to sit under a green tree but to create crystals and to form ideas, that is what it means to be at one with nature!

...all the works of the crystallographers ...demonstrate that there is only variety everywhere where they suppose uniformity...

Georges Leclerc [Comte de] Buffon (1707–1788) [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A. I. Kitaigorodskii’s name appears in two versions in this book and even more in the literature. The rules of transliterations from the original Russian suggest Kitaigorodskii, but his name was transliterated on many of his publications as Kitaigorodsky.

  2. 2.

    Another version is also attributed to Kitaigorodskii, “The molecule also has a body; when it’s hit, it feels hurt all over.” This implied the possibility of structural changes in the molecule upon entering the crystal structure, a symbolic departure from Kitaigorodskii’s earlier views about the constancy of molecular geometry regardless whether in the gas phase or in the crystal.

  3. 3.

    Alan L. Mackay gave two remarkable lectures on fivefold symmetry at the Hungarian Academy of Sciences, Budapest, in September, 1982, where he issued this warning.

References

  1. G. Leclerc (Comte de) Buffon, Historie Naturelle des Minéraux, III. Paris, 1783–1788, p. 433; as quoted in A. L. Mackay, A Dictionary of Scientific Quotations. Adam Hilger, Bristol, 1991, p. 43.

    Google Scholar 

  2. K. Čapek, Anglické Listy, Československý Spisovatel, Praha, 1970. The English version cited in our text was kindly provided by Alan L. Mackay, London.

    Google Scholar 

  3. Ibid.

    Google Scholar 

  4. A. L. Mackay, “Duerer’s technique.” Nature 1983, 301, 652. A careful analysis of the drawing is available: E. Schröder, Dürer. Kunst und Geometrie, Akademie Verlag, Berlin, 1980.

    Article  Google Scholar 

  5. S. Alvarez, “Polyhedra in (inorganic) chemistry.” Dalton Trans. 2005, 2209‐2233.

    Google Scholar 

  6. Ibid.

    Google Scholar 

  7. B. Ernst, The Magic Mirror of M. C. Escher, Ballantine Books, New York, 1976.

    Google Scholar 

  8. There is a beautiful book on the history of crystallography, Historical Atlas of Crystallography, J. Lima-de-Faria, ed., Kluwer, Dordrecht, 1990.

    Google Scholar 

  9. R. J. Haüy, Traité de Cristallographie, 1822. Reprinted by Culture et Civilisation, Bruxelles, 1968.

    Google Scholar 

  10. Ibid.

    Google Scholar 

  11. Ibid.

    Google Scholar 

  12. J. Kepler, Strena seu de nive sexangula, Francofurti ad Moenum: Godefridum Tampach, 1611. English translation, The Six-Cornered Snowflake, Clarendon Press, Oxford, 1966.

    Google Scholar 

  13. J. Dalton, Memoirs and Proceedings of the Manchester Literary and Philosophical Society, Manchester, 1805, vol. 6, p. 271; Alembic Club Reprints, Edinburgh, 1961, no. 2, p. 15.

    Google Scholar 

  14. C. J. Schneer, “The Renaissance Background to Crystallography.” Am. Sci. 1983, 71, 254–263; C. Schneer, “Kepler’s New Year’s Gift of a Snowflake.” Isis 1960, 51, 531–545.

    CAS  Google Scholar 

  15. Kepler, The Six-Cornered Snowflake.

    Google Scholar 

  16. Dalton, Memoirs and Proceedings of the Manchester Literary and Philosophical Society, p. 15.

    Google Scholar 

  17. A. L. Mackay, “Generalised Crystallography.” Izvj. Jugosl. Cent. Kristallogr. 1975, 10, 15−36. See, also, A. L. Mackay, “Generalised Crystallography.” J.Mol. Struct. (Theochem) 1995, 336, 293–303; A. L. Mackay, “Generalized Crystallography.” Struct. Chem. 2002, 13, 215–220.

    Google Scholar 

  18. See, e.g., L. A. Shuvalov, A. A. Urosovskaya, I. S. Zheludev, A. V. Zaleskii, S. A. Semiletov, B. N. Grechushnikov, I. G. Chistyakov, S. A. Pikin, Sovremennaya Kristallografiya, Vol. 4, Fizicheskie Svoistva Kristallov, Nauka, Moscow, 1981.

    Google Scholar 

  19. See, e.g., K. N. Trueblood, “Diffraction Studies of Molecular Motion in Crystals” and also, C. M. Gramaccioli, “Lattice-dynamical Interpretation of Crystallographic Thermal Parameters,” both in Accurate Molecular Structures. Their Determination and Importance, A. Domenicano, I. Hargittai, eds., Oxford University Press, Oxford, 1992, pp. 199–219 and pp. 220–236, respectively.

    Google Scholar 

  20. M. J. Buerger, Elementary Crystallography, An Introduction to the Fundamental Geometrical Features of Crystals (Fourth Printing), Wiley, New York, London, Sydney, 1967; E. S. Dana, A Textbook of Mineralogy, Fourth Edition, revised and enlarged by W. E. Ford, Wiley, New York, London, Sydney, 1932; P. M. Zorky, Arkhitektura Kristallov, Nauka, Moscow, 1968.

    Google Scholar 

  21. Gy. Lengyel, Kézimunkák, Kossuth, Budapest, 1978.

    Google Scholar 

  22. See, e.g., L. V. Azaroff, Introduction to Solids, McGraw-Hill, New York, Toronto, London, 1960.

    Google Scholar 

  23. Ibid.

    Google Scholar 

  24. Ibid.

    Google Scholar 

  25. International Tables for Crystallography, Volume A: Space-group symmetry. Ed. Th. Hahn. Corrected reprint of the fifth edition. Springer, 2005.

    Google Scholar 

  26. A. V. Shubnikov, V. A. Koptsik, Symmetry in Science and Art, Plenum Press, New York and London, 1974. Russian original: Simmetriya v nauke i iskusstve, Nauka, Moscow, 1972.

    Book  Google Scholar 

  27. C. P. Brock and E. C. Lingafelter, “Common Misconceptions about Crystal Lattices and Crystal Symmetry.” J. Chem. Educ. 1980, 57, 552–554.

    Article  CAS  Google Scholar 

  28. M. Senechal, “Brief History of Geometrical Crystallography.” In Historical Atlas of Crystallography, J. Lima-de-Faria, ed. International Union of Crystallography and Kluwer Academic publishers, Dordrecht, Holland, 1990, pp. 43–59, p. 48.

    Google Scholar 

  29. A. L. Mackay, “The Statistics of the distribution of crystalline substances among the space groups.”Acta Crystallogr. 1967, 22, 329–330.

    Article  CAS  Google Scholar 

  30. See, e.g., A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press, New York, 1973. Russian original: A. I. Kitaigorodskii, Molekulyarnie Kristalli, Nauka, Moscow, 1971; A. D. Mighell, V. L. Himes, J. R. Rodgers, “Space-group Frequencies for Organic Compounds.” Acta Crystallogr. A 1983, 39, 737–740; J. Donohue, “Revised Space-group Frequencies for Organic Compounds.” Acta Crystallogr. A 1985, 41, 203–204; R. Srinivasan, “On the Space-group Frequency in Organic Structures.” Acta Crystallogr. A 1991, 47, 452; C. P. Brock, J. D. Dunitz, “Space-group frequencies.” Acta Crystallogr. A 1991, 47, 854; A. J. C. Wilson, “Kitajgorodskij and Space-group Popularity.” ACH—Models in Chemistry 1993, 130, 183–196; C. P. Brock and J. D. Dunitz, “Towards a Grammar of Crystal Packing.” Chemistry of Materials 1994, 6, 1118–1127.

    Google Scholar 

  31. Shubnikov, Koptsik, Symmetry in Science and Art.

    Google Scholar 

  32. Ibid. Russian original: Simmetriya v nauke i isskustve.

    Google Scholar 

  33. Ibid.

    Google Scholar 

  34. J. Dalton, A New System of Chemical Philosophy, p. 128, plate III, Manchester 1808.

    Google Scholar 

  35. D. Hodgkin, “Moments of Discovery.” Kristallografiya (Sov. Phys. Crystallogr.) 1981, 26, 1029–1045.

    CAS  Google Scholar 

  36. Dalton, A New System of Chemical Philosophy, p. 128.

    Google Scholar 

  37. Hodgkin, Kristallografiya (Sov. Phys. Crystallogr.) 1029–1045.

    Google Scholar 

  38. Kitaigorodsky, Molecular Crystals; A. F. Wells, Structural Inorganic Chemistry, Fifth Edition, Clarendon Press, Oxford, 1984.

    Google Scholar 

  39. Wells, Structural Inorganic Chemistry.

    Google Scholar 

  40. Ibid.

    Google Scholar 

  41. Ibid.

    Google Scholar 

  42. Shubnikov, Koptsik, Symmetry in Science and Art.

    Google Scholar 

  43. Ibid.

    Google Scholar 

  44. Ibid.

    Google Scholar 

  45. G. G. Szpiro, Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World. Wiley, Hoboken, New Jersey, 2003.

    Google Scholar 

  46. K. W. Adolph, D. L. D. Caspar, C. J. Hollingshed, E. E. Lattman, W. C. Phillips, W. T. Murakami, “Polyoma Virion and Capsid Crystal Structures.” Science 1979, 203, 1117–1120.

    Article  CAS  Google Scholar 

  47. Ibid.

    Google Scholar 

  48. R. B. Fuller, Synergetics: Explorations in the Geometry of Thinking, Macmillan, New York, 1975; p. 37.

    Google Scholar 

  49. D. L. D. Caspar, A. Klug, “Physical Principles in the Construction of Regular Viruses.” Cold Spring Harbor Symposia on Quantitative Biology 1962, 27, 1–24.

    Article  CAS  Google Scholar 

  50. R. E. Benfield, B. F. G. Johnson, “The Structures and Fluxional Behaviour of the Binary Carbonyls—A New Approach. 2. Cluster Carbonyls M m (CO) n (n = 12,13,14,15, or 16).” J. Chem. Soc. Dalton Trans. 1980, 1743–1767.

    Google Scholar 

  51. A. L. Mackay, “A dense non-crystallographic packing of equal spheres.” Acta Crystallogr. 1962, 15, 916−918.

    Article  CAS  Google Scholar 

  52. K. H. Kuo, “Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters.” Struct. Chem. 2002, 13, 221–230.

    Article  CAS  Google Scholar 

  53. Mackay, Acta Crystallogr. 916−918.

    Google Scholar 

  54. Wells, Structural Inorganic Chemistry.

    Google Scholar 

  55. Ibid.

    Google Scholar 

  56. See, e.g., B. C. Chakoumakos, R. J. Hill, G. V. Gibbs, “A Molecular-Orbital Study of Rings in Silicates and Siloxanes.” Am. Mineral. 1981, 66, 1237–1249.

    CAS  Google Scholar 

  57. Wells, Structural Inorganic Chemistry.

    Google Scholar 

  58. Ibid.

    Google Scholar 

  59. L. Pauling, The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, NY, 1973.

    Google Scholar 

  60. W. Barlow, “Geometrische Untersuchung über eine mechanische Ursuche der Homogenitaet der Struktur und der Symmetrie. ” Z. Krist. 1898, 29, 433–588.

    Google Scholar 

  61. Pauling, The Nature of the Chemical Bond.

    Google Scholar 

  62. J. Bernstein, “Effects of Crystal Environment on Molecular Structure.” In Accurate Molecular Structures. Their Determination and Importance, A. Domenicano and I. Hargittai, eds., Oxford University Press, Oxford, 1992, pp. 469–497; I. Hargittai, J. B. Levy, “Accessible Geometrical Changes.” Struct. Chem. 1999, 10, 387–389; V. Horváth, I. Hargittai, “Geometrical Changes and Their Energies in the Formation of Donor–Acceptor Complexes.” Struct. Chem. 2004, 15, 233–236.

    Google Scholar 

  63. Kitaigorodsky, Molecular Crystals.

    Google Scholar 

  64. Ibid.

    Google Scholar 

  65. Lucretius, The Nature of Things (De rerum natura). First edition, translated by F. O. Copley. W. W. Norton & Co., New York, 1977. This passage is quoted from Book VI, lines 1084–1086, p. 72.

    Google Scholar 

  66. Lord Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, Appendix H. C. J. Clay & Sons, London, 1904, pp. 618–619.

    Google Scholar 

  67. I. Hargittai, “Symmetry in Crystallography.” Acta Crystallogr. 1998, A54, 697–706; M. Hargittai, “Symmetry, crystallography, and art.” Appl. Phys. A 2007, 89, 889–898.

    Article  CAS  Google Scholar 

  68. Lord Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, pp. 618–619.

    Google Scholar 

  69. A. I. Kitaigorodsky, in Advances in Structure Research by Diffraction Methods, R. Brill, R. Mason, eds., Vol. 3, p. 173, Pergamon Press, Oxford, etc., Friedr. Vieweg and Sohn, Braunschweig, 1970.

    Chapter  Google Scholar 

  70. F. Wudl, E. T. Zellers, “2,5-Di-N-Chlorothioimino-3,4-Dicyanothiophene – A Novel Monomer of Unusual Molecular and Solid-State Structure” J. Am. Chem. Soc. 1980, 102, 4283–4284.

    Article  CAS  Google Scholar 

  71. F. Wudl, E. T. Zellers, “1,1-Dichloro-2,5-Bis(N-Chlorothioimino)-3, 4-Dicyanoselenophene” J. Am. Chem. Soc. 1980, 102, 5430–5431.

    Article  CAS  Google Scholar 

  72. C. H. MacGillavry, Symmetry Aspects of M. C. Escher’s Periodic Drawings, Bohn, Scheltema and Holkema, Utrecht, 1976.

    Google Scholar 

  73. L. Pauling, M. Delbrück, “The Nature of the Intermolecular Forces Operative in Biological Processes.” Science 1940, 92, 77–79.

    Article  CAS  Google Scholar 

  74. Ibid., p. 78.

    Google Scholar 

  75. Linus Pauling’s Sir Jesse Boot Foundation Lecture titled “Molecular Architecture and the Process of Life” in Nottingham, England, 1948, is quoted by J. D. Dunitz, “Linus Carl Pauling, February 28, 1901-August 19, 1994.” In Biographical Memoirs, vol. 71, National Academy Press, Washington, DC, 1997, p. 236.

    Google Scholar 

  76. A. I. Kitaigorodskii, “The Close-Packing of Molecules in Crystals of Organic Compounds.” J. Phys. (USSR) 1945, 9, 351–352.

    CAS  Google Scholar 

  77. Ibid. J. Phys. (USSR) was an English-language periodical at one time in the Soviet Union.

    Google Scholar 

  78. P. M. Zorky, “The Development of Organic Crystal Chemistry at the Moscow State University.” ACH—Models in Chemistry 1993, 130, 173–181.

    CAS  Google Scholar 

  79. H. A. Stuart, “Über neue Molekülmodelle.” Z. Phys. Chem. (B) 1934, 27, 350–358; G. Briegleb, Fortschr. chem. Forsch. 1950, 1, 642.

    Google Scholar 

  80. Kitaigorodsky, Molecular Crystals; Kitaigorodsky, Advances in Structure Research.

    Google Scholar 

  81. A. Gavezzotti, G. R. Desiraju, “A Systematic Analysis of Packing Energies and other Packing Parameters for Fused-Ring Aromatic Hydrocarbons.” Acta Crystallogr. B 1988, 44, 427–434.

    Article  Google Scholar 

  82. J.-M. Lehn, “Supramolecular Chemistry.” Science 1993, 260, 1762–1763.

    Article  CAS  Google Scholar 

  83. G. D. Andreetti, A. Pochini, R. Ungaro, “Molecular Inclusion in Functionalized Macrocycles. 6. The Crystal and Molecular-Structures of the Calix[4]arene from Para-(1,1,3,3-Tetramethylbutyl)Phenol and Its 1-1 Complex with Toluene.” J. Chem. Soc. Perkin Trans II 1983, 1773–1779; G. D. Andreetti, F. Ugazzoli, in Calixarenes: A Versatile Class of Macrocyclic Compounds, J. Vicens and V. Böhmer, eds. Kluwer, Dordrecht, 1991.

    Google Scholar 

  84. Andreetti, Ugazzoli, in Calixarenes: A Versatile Class of Macrocyclic Compounds.

    Google Scholar 

  85. J.-M. Lehn, “Supramolecular Chemistry—Receptors, Catalysts, and Carriers.” Science 1985, 227, 849–856.

    Article  CAS  Google Scholar 

  86. J. D. Dunitz, in Host-Guest Molecular Interactions: From Chemistry to Biology, D. J. Chadwick and K. Widdows, eds., John Wiley & Sons, Chichester, 1991, p. 92.

    Google Scholar 

  87. Kitaigorodsky, Molecular Crystals; Kitaigorodsky, Advances in Structure Research.

    Google Scholar 

  88. Kitaigorodsky, Molecular Crystals.

    Google Scholar 

  89. Ibid.

    Google Scholar 

  90. Ibid.

    Google Scholar 

  91. Ibid.

    Google Scholar 

  92. Ibid.

    Google Scholar 

  93. Ibid.

    Google Scholar 

  94. Ibid.

    Google Scholar 

  95. See, e.g., K. Mirsky, “Early Days in the Atom−Atom Potential Approach to Intermolecular Interactions.” ACH—Models in Chemistry 1993, 130, 197−204; A. Gavezzotti and G. Filippini, “The Crystal Packing of Chlorine- and Sulfur-Containing Compounds.” ACH—Models in Chemistry 1993, 130, 205−220, and references therein.

    Google Scholar 

  96. J. Maddox, “Crystals from 1st Principles.” Nature 1988, 335, 201.

    Article  Google Scholar 

  97. D. Braga and F. Grepioni, “Molecular Self-Recognition and Crystal Building in Transition-Metal Carbonyl Clusters—The Cases of Ru3(CO)12 and Fe3(CO)12.” Organometallics 1991, 10, 1254–1259.

    Article  CAS  Google Scholar 

  98. Ibid.

    Google Scholar 

  99. Mirsky, ACH—Models in Chemistry, 197−204; Gavezzotti, Filippini, ACH—Models in Chemistry 205−220.

    Google Scholar 

  100. Zorky, ACH—Models in Chemistry, 173−181.

    Google Scholar 

  101. I. Hargittai, M. Hargittai, In Our Own Image: Personal Symmetry in Discovery. Plenum/Kluwer, New York, 2000, p. 112.

    Book  Google Scholar 

  102. See, e.g., P. M. Zorky, E. E. Dashevskaya, “Hypersymmetry in Polysystem (Particularly in Multisystem) Molecular Crystals.” ACH—Models in Chemistry 1993, 130, 247−259; P. M. Zorky, O. N. Zorkaya, “Specific Intermolecular Interactions in Organic Crystals: Conjugated Hydrogen Bonds and Contacts of Benzene Rings.” In M. Hargittai, I. Hargittai, eds., Advances in Molecular Structure Research, Vol. 3, 1997, pp. 147−188.

    Article  CAS  Google Scholar 

  103. P. M. Zorky, V. A. Koptsik, in Sovremennie Problemi Fizicheskoi Khimii, Ya. I. Gerasimov, P. A. Akishin, eds., Izd. Moskov. Univ., Moscow, 1979.

    Google Scholar 

  104. See, e.g., the special thematical issue devoted to the memory of P. M. Zorky in Structural Chemistry 2007.

    Google Scholar 

  105. Kitaigorodsky, in Advances in Structure Research by Diffraction Methods.

    Google Scholar 

  106. T. P. Martin, “Alkali-Halide Clusters and Micro-Crystals.” Phys. Rev. 1983, 95, 167–199.

    CAS  Google Scholar 

  107. M. Hargittai, “Molecular Structure of Metal Halides.” Chem. Rev. 2000, 100, 2233–2301.

    Article  CAS  Google Scholar 

  108. B. Vest, Z. Varga, M. Hargittai, A. Hermann, P. Schwerdtfeger, “The Elusive Structure of CrCl2 – A Combined Computational and Gas-Phase Electron Diffraction Study.” Chem. Eur. J. 2008, 14, 5130–5143.

    Article  CAS  Google Scholar 

  109. A. Hermann, B. Vest, P. Schwerdtfeger, “Density Functional Study of a-CrCl2: Structural, Electronic, and Magnetic Properties.” Phys. Rev. B 2006, 74.

    Google Scholar 

  110. Hargittai, Chem. Rev. 2233–2301.

    Google Scholar 

  111. U. Müller, Inorganic Structural Chemistry, Wiley, Chichester and New York, 1993.

    Google Scholar 

  112. Vest, et al., Chem. Eur. J. 5130–5143.

    Google Scholar 

  113. Gas-phase study: G. Schultz, I. Hargittai, “Electron diffraction investigation of ethane-1,2-dithiol.” Acta Chim. Hung. 1973, 75, 381–388; solid-state study: M. Hayashi, Y. Shiro, T. Oshima, and H. Murata, “The Vibrational Assignment, Rotational Isomerism and Force Constants of 1,2-Ethanedithiol.” Bull. Chem. Soc. Japan 1965, 38, 1734–1740.

    Article  Google Scholar 

  114. A. Domenicano, I. Hargittai, eds., Accurate Molecular Structures. Their Determination and Importance. Oxford University Press, Oxford, 1992.

    Google Scholar 

  115. I. Hargittai, M. Hargittai, “The importance of small structural differences” in Molecular Structure and Energetics, Vol. 2, Chapter 1, J. F. Liebman, A. Greenberg, eds., VCH Publishers, Deerfield Beach, FL, 1986, pp. 1–35; M. Hargittai, I. Hargittai, “Gas-solid molecular structure differences.” Phys. Chem. Miner. 1987, 14, 413–425.

    Article  CAS  Google Scholar 

  116. M. Hargittai, I. Hargittai, “Electron diffraction investigation of the molecular structures of two trimethylamine–boron halide adducts in the vapour phase.” J.Mol. Struct. 1977, 39, 79–89.

    Article  CAS  Google Scholar 

  117. W. A. Burns, K. R. Leopold, “Unusually Large Gas-Solid Structure Differences—A Crystallographic Study of HCN–BF3.” J. Am. Chem. Soc. 1993, 115, 11622–11623.

    Article  CAS  Google Scholar 

  118. G. Forgács, M. Kolonits, I. Hargittai, “The gas-phase molecular structure of 1-fluorosilatrane from electron diffraction.” Struct. Chem. 1990, 1, 245–250.

    Article  Google Scholar 

  119. J. Bernstein, Polymorphism in Molecular Crystals. Clarendon Press, Oxford, UK, 2002.

    Google Scholar 

  120. P. Scharfenberg, I. Hargittai,“ On the structural differences of conformers (Astudy on 1,2-disubstituted ethanes and ethenes).” J. Mol. Struct. 1984, 112, 65–70.

    Article  CAS  Google Scholar 

  121. A. L. Mackay, “Crystal Symmetry.” Phys. Bull. 1976, 495–497; A. L. Mackay, “De Niva Quinquangula: On the pentagonal snowflake.” Kritallografiya (Sov. Phys. Crystallogr.) 1981, 26, 910–919 (517–522).

    Google Scholar 

  122. Ibid.

    Google Scholar 

  123. J. D. Bernal, “The Importance of Symmetry in the Solids and Liquids.” Acta Phys. Acad. Sci. Hung. 1958, 8, 269–276.

    Article  Google Scholar 

  124. N. V. Belov, Kristallografiya 1972, 17, 208.

    Google Scholar 

  125. A. Wickham, Selected Poems, Chatto and Windus, London, 1971.

    Google Scholar 

  126. W. H. Zachariasen, “Atomic Arrangement in Glass.” J. Am. Chem. Soc. 1932, 54, 3841–3851; A. R. Cooper, “Zachariasen,WH – The Melody Lingers on.” J. Non-Crystalline Solids 1982; 49, 1–17.

    Article  Google Scholar 

  127. A. Guinier, “Intermediary States between Order and Disporder.” In Diffraction Studies on Non-Crystalline Substances, I. Hargittai, W. J. Orville Thomas, eds., Elsevier, Amsterdam, 1981, pp. 411–438, p. 413.

    Google Scholar 

  128. M. Laridjani, P. Donnadieu, F. Dénoyer, “Experimental Overview of Complex Intermetallic Structures.” Struct. Chem. 2002, 13, 385–396.

    Article  CAS  Google Scholar 

  129. Zachariasen, J. Am. Chem. Soc., 3841–3851.

    Google Scholar 

  130. Guinier, in Diffraction Studies on Non-Crystalline Substances, pp. 411–438, p. 417.

    Google Scholar 

  131. Mackay, Kristallografiya, 910–919.

    Google Scholar 

  132. Ibid.

    Google Scholar 

  133. Ibid.

    Google Scholar 

  134. D. Levine, P. J. Steinhardt, “Quasicrystals: A New Class of Ordered Structures.” Phys. Rev. Lett. 1984, 53, 2477−2480; For an overview, see, M. La Brecque, Mosaic 1987/88, 18, 1.

    Google Scholar 

  135. R. Penrose, “Pentaplexity.” Eureka 1978, 39, 16–22; R. Penrose, “Pentaplexity: A Class of Nonperiodic Tilings of the Plane.” Math Intell. 1979/80, 2, 32–37.

    Google Scholar 

  136. B. Grünbaum, G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.

    Google Scholar 

  137. M. Gardner, “Extraordinary Nonperiodic Tiling that Enriches the Theory of Tiles.” Sci. Amer. 1977, 236, 110–121.

    Article  Google Scholar 

  138. Penrose, Eureka 16–22; Math Intell. 32–37.

    Google Scholar 

  139. A. L. Mackay, “Crystallography and the Penrose pattern.” Physica 1982, 114A, 609–613.

    Article  CAS  Google Scholar 

  140. Hargittai, Hargittai, In Our Own Image, p. 159.

    Google Scholar 

  141. “Dans les champ de l’observation, l’hasard ne favorise que les esprits préparés.” (In the field of observation, chance only favors those minds which have been prepared). Encyclopaedia Britannica 1911, 11th edition, volume 20, quoted here after A. L. Mackay, A Dictionary of Scientific Quotations, Adam Hilger, Bristol, 1991.

    Google Scholar 

  142. D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, “Metallic Phase with Long Range Orientational Order and No Translational Symmetry.” Phys. Rev. Lett. 1984, 53, 1951−1953.

    Article  CAS  Google Scholar 

  143. Levine, Steinhardt, Phys. Rev. Lett. 2477–2480.

    Google Scholar 

  144. P. J. Steinhardt, “Quasi-Crystals—A New Form of Matter.” Endeavour, New Ser. 1990, 14(3), 112–116.

    Article  Google Scholar 

  145. N. D. Mermin, “Copernican Crystallography” Phys. Rev. Lett. 1992, 68, 1172–1175.

    Article  Google Scholar 

  146. P. M. de Wolff, W. van Aalst, “The Four-dimensional Space Group of γ-Na2Co3.” Acta Crystallogr. A 1972, 28, S111; A. Janner, T. Janssen, “Superspace Groups.” Physica A 1979, 99, 47–76.

    Article  Google Scholar 

  147. J. W. Cahn, “Epilogue.” In C. Janot, R. Mosseri, eds., Proceedings of the 5th International Conference on “Quasicrystals,” Avignon, 22–26 May 1995. World Scientific, Singapore, 1995, pp. 806–810.

    Google Scholar 

  148. T. S. Kuhn, The Structure of Scientific Revolutions. Second, enlarged edition. The University of Chicago Press, 1970.

    Google Scholar 

  149. L. Pauling, “Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals.” Nature 1985, 317, 512–514; L. Pauling, “Interpretation of So-called Icosahedral and Decagonal Quasicrystals of Alloys Showing Apparent Icosahedral Symmetry Elements as Twins of an 820-Atom Cubic Crystal.” In I. Hargittai, ed., Symmetry 2: Unifying Human Understanding. Pergamon Press, Oxford, 1989, pp. 337–339.

    Google Scholar 

  150. P. J. Lu, P. J. Steinhardt, “Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture.” Science 2007, 315, 1106−1110; E. Makovicky, F. Rull Pérez, P. Fenoll Hach-Alí, “Decagonal patterns in the Islamic ornamental art of Spain and Morocco.” Boletín de la Solidad Española de Mineralogía 1998, 21, 107–127; I. Hargittai, “Pentagonal Decoration in Granada.” Math. Intell. 1993, 15(2), 46–47.

    Article  Google Scholar 

  151. See, e.g., J. N. Wilford, “In Medieval Architecture, Signs of Advanced Math.” The New York Times 2007, February 27, p. F2. The findings and their reports generated some discussion of priority. On a similar controversy concerning the original discovery of quasicrystals, see, I. Hargittai, M. Hargittai, In Our Own Image, pp. 169–174.

    Google Scholar 

  152. A. Csanády, K. Papp, M. Dobosy, M. Bauer, “Direct Observation of the Phase Transformation of quasicrystals to Al6Mn Crystals.” Symmetry 1990, 1, 75–79.

    Google Scholar 

  153. I. Hargittai, ed., Fivefold Symmetry. World Scientific, Singapore, 1992, p. xiv.

    Book  Google Scholar 

  154. F. Dénoyer, “X-Ray Diffraction Study of Slowly Solidified Icosahedral Alloys.” In I. Hargittai, ed., Quasicrystals, Networks, and Molecules of Fivefold Symmetry, VCH, New York, 1990, pp. 69–82.

    Google Scholar 

  155. A. L. Mackay, “Quasi-Crystals and Amorphous Materials.” J. Non-Cryst. Solids 1987, 97&98, 55−62.

    Article  Google Scholar 

  156. I. Hargittai, “Quo Vadis Crystallography?” Z. Kristallogr. 2002, 217, 314–315.

    Article  Google Scholar 

  157. John Ruskin’s words are quoted here after L. V. Azaroff, Introduction to Solids. McGraw-Hill, 1960.

    Google Scholar 

  158. C. Bunn, Crystals: Their Role in Nature and Science. Academic Press, New York, 1964.

    Google Scholar 

  159. Ibid.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdolna Hargittai .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hargittai, M., Hargittai, I. (2009). Crystals. In: Symmetry through the Eyes of a Chemist. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5628-4_9

Download citation

Publish with us

Policies and ethics